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Diffusion-limited aggregation as a Markovian process: Bond-sticking conditions
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Cylindrical lattice diffusion limited aggregatiofDLA ), with a narrow widthN, is solved using a Markovian
matrix method. This matrix contains the probabilities that the front moves from one configuration to another at
each growth step, calculated exactly by solving the Laplace equation and using the proper normalization. The
method is applied for a series of approximations, which include only a finite number of rows near the front.
The matrix is then used to find the weights of the steady-state growing configurations and the rate of approach-
ing this steady-state stage. The former are then used to find the average upward growth probability, the average
steady-state density and the fractal dimensionality of the aggregate, which is extrapolated to a value near 1.64.

PACS numbgs): 61.43.Hv, 05.20.Dd, 02.50.Ga

. INTRODUCTION V2P =0, (1.1

Diffusion-limited aggregation(DLA) [1] has been the with the following boundary conditions: the aggregate is
subject of extensive study since it was first introduced. Thisonsidered to have a constant potential that is usually set to
model exhibits a growth process that produces highly rami0, and the potential gradient on the distant boundary is set to
fied self similar patterns, which are believed to be fractalsl in some arbitrary unitésome use a constant potential on
[2]. It seems that DLA captures the essential mechanism ithe distant boundary instepdn this paper we set the distant
many natural growth processes, such as viscous fingerinlgoundary at infinity, and ignore the exponentially small finite
[3], dielectric breakdow4], etc. It is now understood that Size corrections. After solving the discrete Laplace equation
the Laplace equation, which is common to all of these pro{1.1), the field ® determines the growth probabilities per
cesses and to DLA, has a major role in the resemblancBerimeter bond. More specifically, the growth probabilities
between them. One of the interesting features of DLA is thafifé proportional to the electric field to some powgrThe
there are no parameters to fine-tune in order to obtain a fra@lectric field is simply equal to the potential difference across
tal. It thus differs from ordinary critical phenomena, and be-€ach bond. Because the potential is set to 0 on the aggregate,
longs to the class of self-organized criticalit§OQ [5]. In th_e electric field is _equal to the potential value at the sites
spite of the apparent simplicity of the model, an analyticIylng across the perimeter bonds. Thus,
solution is still unavailable. Particularly, the exact value of

the fractal dimension is not known. Some of the analytic P, — |Dy|” 1.2
approaches employed so far include the fixed scale transfor- b E ® n' '
mation (FST) [6], real space renormalization grolRSRG = | Dy

[7—9] and conformal mappin{l0,11].

In DLA there is a seed cluster of particles fixed some-Here b is the bond index.
where. A particle is released at a distance from the cluster, pLA and DBM can be grown in various geometries. By
and performs a random walk until it attempts to penetrate thgeometry we refer to the dimensionality of the lattice, to the
fixed cluster, in which case it sticks. Then the next particle isshapes of the boundaries and to the details of the seed for
released and so on. There are two common types of stickingrowth (usually a point or a line for two-dimensional
conditions. The sticking condition described above is calledyrowth). For instance, the case in which the distant boundary
“bond-DLA,” because it occurs when a particle goes into ais a sphere is called radial boundary conditions, and the case
perimeter bond. In “site-DLA,” sticking occurs as soon as in which the boundary is a distant plane at the top, while the
the particle arrives in a perimeter site. This paper deals witlseed cluster is a parallel plane at the bottom, with periodic
bond-DLA, whereas site-DLA will be considered elsewhereboundary conditions on the sides, is called cylindrical bound-
[12]. The large scale structure of DLA is not sensitive to theary conditions. In this paper we only consider the cylindrical
type of sticking conditions us€d 3]. case, with a relatively short period lengfwidth), from N

It has been shown that bond-DLA is equivalent to the=2 to aboutN=7, although the method described here
dielectric breakdown modéDBM) with =1 [4,14]. DBM could also be used for wider cases.
is a cellular automaton that is defined on a lattice. It consists Recently we published an exact solution to DLA in cylin-
of the following steps: one starts with a seed cluster of condrical geometry of widtiN=2 [15]. The present paper gen-
nected sites and with a boundary surface far away from it. Aeralizes and extends that solution. Our approach follows the
field @, which corresponds to the electrostatic potential, isdynamics of the interface. The interface alone determines the
found by solving the discrete Laplace equation on a lattice,growth probabilities at each time step, and whatever lies
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FIG. 2. Possible growth processes that change the interface from

an initial step sizg =3 to a final sizé =4,0,1,2. The growth prob-
n= O 1 ability is determined by the potential and the number of bonds

. . . . i with the site where growth i r. is th ndi-
FIG. 1. The coordinates,n) describe the location on a lattice assoc ated .t. the site where g o t s 1o OC@J St € Co d
tional probability to grow from an initial step sijeto a final step

that is two sne_s w_lde. The gray sites belqr_lg to the interface of thesizei. The normalization follows from Eq(1.10.
aggregate, which is shaped as a step of gize

behind it is irrelevant. This is because the solution to the 2 Eij=1, j=0,...p. (1.9
Laplace equation is unique, provided that the boundary con- =0

ditions are well defined. We now give a brief summary of ) )

Ref. [15]. The characterization of the interface fur=2 is  After many iterations of Eq(1.3) the system converges to a
simple; the interface ifully characterized by a single param- fixed pointP*, also called the steady state, which represents
eter (usually denoted by or j), which corresponds to the the asymptotic time dlstrlbu_tlon of the step sizes. From the
height difference between the two columns. This height dif_steady state and the evolution matrpg we are able to extract
ference, referred to as the step size, can be infinitely Iargethe average upward growth pro_bablll(cpup>*, the average
see Fig. 1. If the interface is flaj € 0), one can assume that densityp and the fractal dimensiob.

the next particle will always stick on the right side, without !N order to obtain an analytic expression for the elements
limiting the generality of this discussion. This means that the®f the evolution matrix, one must first solve the Laplace
step size can always be considered as non-negative. Tig&uation. Having found the solutionk(m,n), the growth

Markovian dynamics is then presented using the MasteProbabilities are found from Eq(1.2). The denominator
equation, there, which comes from the normalization, is particularly

simple for the special case af=1, where the discrete ver-
sion of the divergence theorem implies thab]

P(t+1)=24 B Py(), 3 S op=N. (15

whereP,(t) is the probability that the step sizejist timet, The actual growth probability into a site is then found from
andE; ; is the time independent conditional probability that

an initial step size will becomei after the next growth Pste= > P (1.6)
process. An example with several possible transitions is bonds into site

shown in Fig. 2P(t) is called the state vector afdis called ) o o )
the evolution matrix. In principle, a similar Master equation  1he solution of the Laplace equation is now divided into
can be written for more complex growth situations, providedWo parts. In the first part, we solve the Laplace equation for
the various configurations can be indexed with a single indeXh® “Upper” part of space, which starts just above the high-

j. Being made out of conditional probabilities, the elementsSSt particle of the aggregate and continues upwards to infin-
of the evolution matrix obey that, ity. In the example of Fig. 1, this part contains all the rows

with m=0. As we explain below, this solution is completely
determined by the boundary conditions and by the values of
O<Ejj=<1, i,j=0,... 0, the potential at the row witln=0, i.e.,{®(0,n)}. We then
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solve the Laplace equation for the “lower” parm&0 in
Fig. 1), and find the values dfd®(0,n)} from matching the
two regimes. The solution in the “upper” part is given as a
combination of solutions of the forifi5]

(D(m’n):exm-#ikn’ (17)
with the dispersion relation

LK) k L8

sin E__sz (1.8

and with the discrete set of allowed valuks=(27/N)I,
which follow from the periodic lateral boundary conditions,
which require thae'N=1. The boundary conditions at in-
finity have a uniform gradient, i.e.,

Im[®(m+1n)—d(m,n)]=1,

m— o

n=0,... N—1.

(1.9

Given the arbitrarily set of value®(0,n), the solution for
the rowm=1 is

N—1
d(1n)=1+ >, ®On)gn(In—n’]), (1.10
n"=0
where
1 N—-1
QN(H)EN IZO e “cogkn), n=0,...N-1,
(1.11)

is the boundary Green’s function, amg corresponds td;,
via the dispersion relatiofil.8). The solution is given only
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where
1+go(1)y(ee
Eoo+1,w:.lim EJ+1’]:%20565 ey
j—oe
(1.19
y(*)=\3-2=031B..., e *=2-3=026D...,
a=(1+B)92(1)y(»)/(2E.+1,.)=0.128L . .. and B

=5—/24=0.100. ... Forj=0, the interface will trans-
form into a step of sizg =1 with probability 1, hencé, o
=1 andE; (=0 fori#1. The values of; ; for 0<i,j<4,
up to the fourth decimal digit, are

0.4393 0.3160 0.3177 0.3178 -]
0 0.1185 0.0847 0.0851
0.5607 0 0.0318 0.0227
0 0.5655 0 0.0085

0
1
0
0
0 0 0 0.5658 0

. (1.15

The first diagonal below the main, which represents the
probabilities for the step to grow larger by ortg,; 1, ap-
proaches its asymptotic value Bf..,.=0.5638 ... expo-
nentially, as the third row of Eq1.13 indicates. The diag-

for m=1, because we are only interested in the potential apnal above the main represents the probabilities for growths
sites near the interface. Note that the Green’s function hadt the bottom of the fjordg;_,;, and corresponds to the

the general property

N—-1

go gn(n)=1 (1.12

[15]. It is therefore good practice to check this normalization

second row in Eq(1.13. These probabilities decay exponen-
tially as the step siz¢ grows. According to the first row in
Eq.(1.13, the elementg; ; converge exponentially for large
j's to a simple exponential function,

Ei,w: lim Ei’j=y(00)ef"fi.

J~>oc

(1.1

for each of the calculations presented below. Indeed, all ouThese probabilities relate to the transition from a very large

results obey this rule.
In general, the solution in the “lower” regime is compli-

step to a step of size Next, the steady-state vectBr is
computed and used to evaluate the average upward growth

cated by the variety of configurations. However, this solutionprobability (p,,)*, which in turn, determines the average

is very simple forN=2, when®(m,0) is a linear combina-
tion of e*t™ ande™ ™. Since®(—j,0)=0, one is left with
one unknown®(0,0), to be determined by the matching at
row O.

For the special cagd=2, the above procedure has led to
the exact solutiofi15]

densityp and the fractal dimensioD. These computations
are explained later in Sec. Il.

Our previous paper does not specify details concerning
the manner in which the system converges to the steady state
in time. Besides addressing this issue, our present paper also
treats DLA grown in wider geometrical periodstill in cy-
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TABLE |. The two-dimensional approximate results for various channel wiNtaad for different orders
of approximationO. The quantities presented in each table cell are the average upward growth probability
(pup* and the number of configuratiom, . The approximate results are compared with simulations.

N/O Simulation 1 2 3 4 5 6

3 0.5462 0.569 489 0.545911 0.546 046 0.546126  0.546 132 0.546 132
3 7 17 45 127 371

4 0.4657 0.495 435 0.464 571 0.465 395 0.465 730 0.465 765 0.465 768
5 20 98 575 3640 23676

5 0.4106 0.444 088 0.407 582 0.409 497 0.410414 0.410547
7 47 457 5539 69 791

6 0.3696 0.405619 0.364 352 0.367 295 0.369172
12 131 2217 49678

7 0.3377 0.375 448 0.330112 0.333622
17 337 10403

lindrical geometry. The basic approach is the same, i.e., weshow a way of successively generalizing the model to ap-
try to characterize the possible configurations of the interfac@roximate bond-DLA with a period oN=2 and with in-

for wider periods, and then write the evolution matrix, which creasing order®. We are able to check the approximations

is composed of the growth probabilities, which are computedy comparing with the exact results of REE5]. This model

from the Laplace potential, after proper normalization. Thealso enables us to investigate the rate of convergence to the
first difficulty encountered is in the characterization. For ex-steady state. In this context we describe the convergence in
ample, already for a width dfl=3 one cannot characterize terms of other eigenvectors, with eigenvalues whose absolute
the interface using a single parameter as in the d&s®,  values are smaller than 1, and in terms of the infinite shift-
nor is it easy doing so using two parameters, or more. Indown operator. We show that the average upward growth
stead, we make a manual list of possible configurations oprobability converges exponentially in time to its steady-
the interface, which we then order according to the differ-state value, with a characteristic time constant on the order of
ence in height between the highest and lowest points on thenity. In Sec. lll we generalize our method to cylindrical
interface. This difference is denoted ym. Our order© DLA with N>2. We present in detail the calculations for
approximation includes only the configurations witfm N=3 with O=1 andO=2, and forN=4 with O=1. Next

< 0. In our approximation, some of these configurations repwe report on numerical results for wider periods and higher
resent many othdexcluded configurations, in the sense that orders. In the final section we review the results and summa-
they have very similar growth probabilities, especially up-rize.

ward. This is because of the screening quality of the Laplace

equation, which causes the potential to decay exponentially Il. FRUSTRATED CLIMBER MODEL

inside fjords. Thus, the deeper parts of the interface have a
very small effect on the upward growth probability. The fi-
nite list of configurations is indexed arbitrarily, with an index
usually denoted byorj. Our experience shows that accurate . . "
results are obtained, only when the order of approximatfion ity qzl.._ p. We call thg cllmber frustr_ated, because the
is comparable to the width of the cylinds Thus, for wide ~Propability to get very high is exponentially small. We wish
periods, a high-order calculation is called for. This causes thi&® compute the probabilityi(t) for the climber to be at
method to be ineffective for very wide periods, because thd€ighti aftert time steps, foi =0, . . . . The Master equa-

number of configurations grows exponentially with the ordertion for this problem isP(t+1)=EP(t), where the matrix

of approximation. We conducted calculations up\ie: 7. elementE; ; is the conditional probability that the climber
After selecting the finite list of configurations and obtain- MOVes from heighj to i in a single time step. The rules of
ing the finite evolution matrix, we compute the steady-statdn® model imply that

Consider someone trying to climb up a slippery infinite
ladder. At each time step the climber climbs up one step with
probability O<p=1, or falls all the way down with probabil-

vector, which is the fixed point of the matrithe normalized p, i=j+1

eigenvector with an eigenvalue of 1). For each configuration, .

we identify the upward growth processeshen the newly Eii={Q =0 , j=0, 21
attached particle is higher than the jest/e then calculate 0, otherwise

the average upward growth probability,,)* as a weighted . . )
average over the configurations. Frqm,,)* we calculate SO the matrix looks like this,
the average density and the fractal dimensioD. The com- - A
puted values ofp,,)*, from different orders of the approxi-
mation, are compared with numerical simulations in Table I. 0
In Sec. Il we introduce a simple Markov process, called E=[0 p
0

©

2.2
the “frustrated climber,” which we solve exactly. A slight @2

modification of the model is equivalent to site-DLA with a
period of N= 2, which is presented elsewhdiE2]. We then

T O O o
O O o o

o
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This presentation helps us see the resemblance to the dynam-
ics of DLA with N=2 in Egs.(1.13, (1.19: Eq.(2.2) would
approximate these equations if we were to replage;; by  The first equation implies that eith&r=0 orv,=0. In both
p~E..,1. and Eq; by g for all j, and neglect all other cases, the last equation implies thatO.

growth probabilities, which are indeed smaller. We shall dis- We next introduce the infinite shift-down operator,
cuss this and better approximations for DLA in the next sub-

\vir1=pv;(t), i=0. (2.11

sections. Because the Markovian matrices for the two cases ro 0 00 i

are similar for largg’s, we expect that some of the dynami- 1 0 0 O

cal features are similar as well. We therefore present here an

exact solution for the frustrated climber model, and then try $=|0 1 00 : (212
to draw conclusions for generalized models which represent 0 0 1 0

successive approximations for DLA. The advantage is that in

the simple model of the frustrated climber it is possible to - -

complete description of the temporal convergence. ~ zerg at the evacuated component at the ®pas no eigen-
The steady-state equations for the frustrated climbegectors at all, not even a fixed poifih spite of the fact that

model are 370S,j=1forj=0,... ). In fact, Ev=pSv for all vec-
% torsv with 27 jv;=0.

pi*H:Z Eivj p].*:ppi*, i=0, (2.3 Ngvertheless, t_h(_a_convergence R(t) to P* is simple_.

j=0 Starting from any initial state vectd&(t=0), the first appli-

cation of E causes the first component to be set to its steady-
state valuePy(t=1)=q. At each subsequent iteration an-
other component is set permanentR;(t=2)=qp, P,(t
=3)=qp? etc. P; becomes equal tBj* after no more than
j+1 time steps. The context we are interested in is wider.
We wish to compute the convergence of “observables,” i.e.,
the average of an arbitrary functica(j), over configura-

o tions. We compute the average at time
The average upward growth probability in the steady state is

=P¥=qp, j=0. (2.4

One can easily check that this steady state is normalized,

> Pr=> qp=r——=1. (2.5
|=0 j=0 1 p

(Pup* =2 Prpudi)=2> Pip=p. (2.6) <a>(t)§jzo aPH=( +1'20 ().
=0 J=0 (2.13

where p,,(j) stands for the probability to move upwards where(a)*=327"_,a(j) P is the steady-state average. Start-
when the height of the climber is In this simple model g rom an initial deviation from the steady-stat®), each

Pup(i)=p for all j’s. iteration causes a down shift and a multiplicationgyyence
We now investigate the temporal convergence to the

steady state. We define the vectgt) by

<a><t>=<a>*+ptj§0a(j+t>vj<0>. (2.14

P(t) =P* +v(t). (2.7

BecauseP* and P(t) are probability vectors,X;” P} Equation (2.14) is the analog of the standard eigenvector

=3,",P;(t)=1, for anyt, hence

;0 v;(1)=0. 2.9
We substituter into the dynamical equation and obtain
P(t+1)=EP(t)=P* +Ev(t), (2.9

=Vv(t+1)=Ev(t). (2.10

Next, we look for the rest of the eigenvectors of the evolu-
tion matrix[any eigenvectov with an eigenvalue.# 1, has

description. We can also identify here the exponential decay
of the factorp'. For example, the functioa(j) = 9 j, ‘Mea-

sures” the probability of the climber to be at height (at
any time. At time t the observed average probability is

(a)(t)=P} + ptvjo—t(o)a (219
for t<jo, and(a)(t)= PJ-*O for t>j, [16].

A. First-order approximation for N=2

We now return to Eq(1.13), and try to approximate it by
a sequence of models which are related to the frustrated

to obey Eq.(2.8)]. Surprisingly, there are no eigenvectors cimper model. The simplest approximation would follow if
besides the steady state in this case. The eigenvector equge do not let the particle penetrate into the fjord at all. This

tions are

)\U():qz vj=0,
j=0

is equivalent to settingc;=c0 in Eq. (1.13. According to
these simplified rules, the particle can either stick at (0,0)
and create a flat step o0, or it can stick at (1,1) and
increase the step height by 1. Let us denote the probability
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for the former event by and the latter by. In the first-order to be compared with the exact valge=0.7340. Although
approximation we take and g to be independent of the our model does not really produce fractal structuichse to
initial step sizej, unlessj=0, in which case the step size the narrow width of our spagewe can make an estimate of
increases with probability 1. The Markovian matfix for  the fractal dimension in the same way Pietronet@l. esti-
this case is almost identical to the case of the frustratednated it in Refs[6,18]. For a self similar fractal structure,
climber, one expects that a change of scale by a faiterill change
the average magsiumber of occupied site®f a NXN cut

o 9 G ¢ by a factorN®, whereD is the fractal dimension. Assuming
pp 0 0 O that the above procedure represents a coarse graining of the
sites intoN X N cells, we conclude that asymptoticall
E={ 0 p 0 0 , (2.16 ymprotically
0 0po p=NP~¢, (2.21
L ¢ e and this means that

the only difference being in the first column, where we de- In(p) IN({(Pyp)*)
noteqo=0 andpo=1. In Ref.[12] we show that this model D=d+ In(N) _~ In(N) =1.5202. (2.22

is exact for the case of site-sticking DLA fiv=2.
The solution to this problem is very similar to that of the In Sec. IV we suggest a modified estimate of the fractal
frustrated climber, with small modifications. The steady statedimension, allowing for corrections to the asymptotic form

is (2.22).
‘ _ The study of the convergence to the steady state is again
Py =Pgpop’ % =1, (217 limited to the subspace of vectowswith =7_;=0. The

dynamic equation for=0 is,
whereP§ can be determined using the normalization condi-

tion -
Uo(t+1):CIOUO(t)+J§=:1 qu; (1) =(do— Avo(t),
1= Pr=Pg| 1+ I,
2, P1=PE| 1+po2, ) =0(t)=(do—)'vo(0). (2.23
1 (2.18 Since qo=0, the exponentiated prefactor is negative, and

=P} :—p. thereforevo(t) is oscillating during its decay. After the first
1=p+po iterationv 1(1)=povo(0), regardless of its initial value. Af-

o terwards it continues to followvy, i.e., v{(t)=po(dq

The average upward growth probability is evaluated by — )t vo(0). After the second iteration,(2)= popvo(0),
0 and it also starts to decay exponentially with the factpy (
(Dyk —p*p 4 (1—P*\p= ° 21 —q). This happens for any>1; after more thaftime steps

<pup> 0 Po ( 0)p 1_p+po ( 9) (t>j) one has,
The superscript (1) appears because it is the first-order ap- vi(t)= popj’l(qo—q)t’jvo(O). (2.249

proximation. We now need to choopeOne possible choice . o ) o

would be to takep=E..,,..=0.5658, because this is the For short times _and large indiceés j, the dynamics is gov-
asymptotic upward growth probability, and then spt1  €rned by the shift-down operator,

—p. This would give(p{))* =0.6973, to be compared with -

the exact value 0.681P15]. An alternative approximation - —mt t D)

would return to Eq(1.13, but replacey(«) by g, and then V() =vo(0)(Go=arh+p J‘zl Cje( ' (229

find q by solving I=p+q=[1+g,(1)q]/2+q. This yields . )

p=1-q=2-2=0.5858, and therefore<p$-))>* =\2/2 wheree!) are the standard basis vectors, the components of
—0.7071. the vectorh are,

We next calculate the average density and the fractal di- h
mensionality. Similar to the argument used by Turkevich and 0
Scher{17], we consider a large number of growth processes
nin the steady state. During this growth the aggregate would h;
grow higher byh=(p,*n. The total volume covered by p
the new growth ihN®" !, whered=2 is the Euclidean di-
mension. Thus, foN=2 and for our first approximation, the

i
@(qoﬁq) = (228

and the constants; are determined by the initial conditions,

density is ¢;=v(0)~vo(O)h;, j=12,....  (2.27
n n 1 0.7171 For p>0.5 the components oh explode exponentially.
P= hNd—l_<pup>*nNd—1_<pup>*Nd—1_ ' ' However, 2;_,v;(0)=0 and therefore Ilrln_mv]-(0)=0.

(2.20  Thus, in order to cancel the divergence of thés, thec;’s
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must also explode exponentially and have an opposite sign. 0o=0,
We note that because of this divergeriteloes not have a
finite L, norm and thus does not belong to the domairkof ro=1,

Therefore it is not an eigenvector.

6—342

d1=——)—=0.4393,

B. Higher-order approximations for N=2

As mentioned earlier, the frustrated climber model re-

sembles the bond-DLA evolution matrid.13, (1.15. In ri=0,

this section we approximate the full dynamics using increas- 322 (2.31
ingly more complex matrices. By doing so we do not im- p;= =0.5607,

prove on the accuracy of our previously published results 4

[15], but rather learn about the rate of convergence to the

steady state. The method used in this section is generalized q=y()=3-2=0.3178,

and applied to cylindrical DLA with wider periods in the

next section. The cad¢=2 is the simplest demonstration of

this approach.

The second-order approximation is to allow also transi-

tions of the kindj—1 for j=1. We also allow having arbi-
trary values in the top left 2 corner of the matrix, which
we copy from the original matrix of Eq1.15), i.e.,

o 92 9 gq ¢
ro ry r rr
0 pp 0 0 O
E= 0 0 po o (2.28
0 0 O0p O

We still require that the sum of the elements in each column

be equal to 1, i.e.,
q0+I‘O=1,
gi+ri+p;=1, (2.29

q+r+p=1.

In terms of standard DLA this means that we allow the par-

p=E...1.=0.5658,

— ki

=0.1163.

_Kf—

F=y (o) —

First, the steady state is found by solviR§=EP*, i.e.,

P3=qOP6+q1PI+qj§2 P,

©

PT=0doP5 +a:PT +r122 P,

(2.32
P>=p:P7,
Pia=pP, j=2.
The solution to the last equation is
P¥=Ppi~2 j=2. (2.33

Keeping this in mind it is possible to exchange the two last
equations of the s€R.32 with

122 PF=p,P} + pjgz PF. (2.39)

ticle to penetrate two sites into the fjord, but no more. Indeed _ o

it is exponentially improbable to penetrate deep into thelhus we obtain an autonomous and finite set of thre;e equa-
fiord. This fact suggests a controlled approximation fortions for three unknowns, namelyPs, PP and P}
DLA. In each order of the approximation we allow the depthEE?Oisz* . The third parameterP} , represents the total

of penetration into the fjord to grow by 1. This is done by nyropability for the infinitely many configurations wit= 2.

copying the O+1)X O upper left block of the original ma-

trix (1.13, (1.15, whereO is the order of approximation.

Asymptotic values are used outside this block, i.e.,
Ej+l,j:E00+l,Ocv JZO,

Ei’jzy(:)o)e_’(fi, JBO! i<0-2,

(2.30
n-2 . e rxt(n—1)
Eno1j=1— 2 y(®)e “1—E  j=y(®) ——,
i=0 l—e™ %t
j=0,

This reduction of the problem to three parameters became
possible because all of the configurations wjth2 have
exactly the same transition probabilities to the configurations
j=0 andj=1, and because they have exactly the same up-
ward growth probability. Thus we obtain a fixed point equa-
tion for a three-component vector,

Po| [a0 a. al| Po
Pi|=|ro ra r||PT]. (2.35
2 0 p1 PILP

o

It is guaranteed that a nontrivial solution exists, because the
sum of the terms in each column of the finite matrix equals

and the rest of the matrix elements are null. For example, irl. Using the constants from Eq®.31), the normalized so-

our case0O=2, the constants in the matr{2.28 are

lution obtained is,
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TABLE Il. Some steady-state results of the third-order approximation.

(Pup)* P3 P P> P3 P3 Pg
Third order 0.6812 0.2696 0.3114 0.1820 0.1029 0.0582 0.0329
Accurate 0.6812 0.2696 0.3113 0.1809 0.1032 0.0586 0.0332

P%(2)=0.2705, (0.2696,
p*(2=0.3184, (0.3113, (2.36

P3(®=0.4111, (0.419,

where the superscript denotes the order of approximation and
a comparison is drawn to the exact values in parentheses. By
“exact” we refer to very high order calculations, or to val-

The eigenvalues obtained are(®’=—0.5599 and\{?
=0.1257, using the constants of Eq&.31). Hence, 7
=1.7. In order to describe the convergenceRy(t) for j
=2 we use the vectov(t) =P(t) —P*, once more, and we
perform a decomposition similar to E(.25),

v(t)=corbh+co\tg+ p‘lzz c; ey, (2.43

ues from simulationgwhich are the same up to the presentedwherec, andc; are the same as in ER.40 and the con-

accuracy of 10%) [15]. The element®} for j=2 are evalu-
ated using

Pr@=(1-p)P3Pp -2, j=2. (2.37

It is now possible to evaluate the average upward growth

probability

<p$))>~k:p3ro+ Pi‘ p1+ﬁ§p=0.6816, (2-3&

where the exact value is 0.6812. The fractal dimension is

evaluated as in Eq2.22),
D®)=1.5530, (2.39

compared to the exact value 1.5538.

stantsc; for j=2 are determined by the initial condition
v(0). Thevectorsh andg are infinite generalizations of the

finite vectorsh andg, according to

hj=h;, g;=g;, j=0.1,

hy=pihy, 92=pi0:, =2, (2.44
p\? p\i—2
hj:hz()\—o) , gj:gz()\—l , =2

Becausep=E..1..>|\g|,|\4|, it is apparent that the com-
ponentsh; and g; diverge exponentially for larg¢’s. This
means that these vectors do not have a fibhitenorm, and
that they do not belong to the domain Bf Therefore, they

The temporal convergence to the steady state in thare not eigenvectors, ang and\; are not eigenvalues &.
second-order approximation can be analyzed using both thgevertheless, Eq2.43 is still true. The effect of the shift-
shift-down operator and eigenvectors. The first eigenvectofiown operator is manifested in the Sl’ﬁff”zzcje(i‘*'t)_

of the matrix in Eq.(2.39 is the fixed point solution, which
we denote byP*. Let us denote the other twéthree-
componentseigenvectors by andg, and their correspond-
ing eigenvalues byAo|=|\4|. After t iterations of the evo-
lution matrix we have

ﬁ(t):ﬁ* +COABF]+C1)\t1§, (24@

Using the same method it is possible to make higher-order
calculations. The steady-state quantities resulting from the
third-order approximation are presented in Table Il, in com-
parison with exact results. The eigenvalue with the largest
absolute value ia.{¥=—0.5687, which has a greater abso-
lute value thark.. . ; ..=0.5658. This means that a legitimate
eigenvector exists for the infinite matrix. In the fourth- and
fifth-order approximation we get{"®~ —0.5688. This sug-

wherec, andc; are constants determined by the initial con- gests that the higher the order the more accurate is the evalu-

ditions. The configurational average of some functaf)

ation of Ay and that the accuracy obtained is better than

with a(j)=a(2) for j>2, can be expressed in terms of these10 *. The typical time needed to settle in the steady state

eigenvalues only,

(a)(t)=(a)* +kohg+ki\], (2.42)

wherek, andk; are some other constants. A special function

of this type is the upward growth probabilityp,(j)
=(ro,P1,P,P.P,

... ). Theeigenvalue with the largest abso-

from any initial condition is therefore as short as

7=1.8. (2.45

Ill. DLA WITH N>2

The generalization of the exact methods from R&E] to

lute vall_Je_other than 1y, makes the largest contribution to N> 2 is not straightforward. Trying to proceed along a simi-
the deviation from the steady-state values, and thus controlgr line, one would try to parametrize the interface with a

the temporal convergence. The characteristic time constapfarameteri=1,2, ..., and write the Master equation

for the exponential convergence is,

1

= (o) (242

Pi(t+1)=37_,E; jP;(t). Unlike the caséN=2, the param-

eterization forN>2 is very complicated. For instance, for
the caseN=3 it is reasonable to try using two parameters,
which indicate the height of two columns relative to the
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23
RORRRRNRRNY 52
FIG. 3. An example of an interface configuration for=3 that F_IG. 5. The three possible conf_igurations in the first-order_ap-

cannot be characterized using the height differences of two columrRfoximation forN=3, up to translation symmetry. The arrows in-
relative to the third. dicate the possible transitions due to growth processes. The transi-

tion probability from configuration to i is denoted byE; ; .
highest(or lowes} third column. However, this is insuffi- L . .
cient because complex fiordinvolving overhangs might fixed point is guaranteed. The other eigenvectors describe the
occur, as shown in Fig. 3. Instead of achieving a perfecfat€ Of convergence to the steady state. _ _
parametrization, we adopt the approximate approach of Sec.  1N€ best way to demonstrate this approach is by showing
Il B, i.e., we take into account only a finite number of inter- a few sample calculations. The easiest ones are the first- and
face configurations. These configurations are classified a&econd-order approximation fof=3 and the first-order ap-
cording to the maximum height difference between the highProximation forN=4. After that we explain the general al-
est and lowest particles on the interfacem. In the gorithm for higher orders and widths, and report the results
Oth-order approximation all the configurations withm  OPtained numerically.
<O are included. The excluded configurations witim _ o
>0 are transformed into a configuration withm=0, by A. First-order approximation for N=3

filling in the (O+1)th row below the highest particle; see  |n the first-order approximation we only look at the top
Fig. 4. This transformation does not change the growth probrow of the aggregate. Fdt= 3 there are only three possible
abilities considerably. Especially, the upward growth prob-configurationup to symmetry, with the top row occupied
ability would hardly change for larg®. The variableP;(t), by 1, 2 or 3 particles. Each configuration is indexed and for
wherei corresponds to a configuration widm=0, actually  each configuration we identify the growth processes and the
represents the sum of probabilities of all the configurationginal configurations resulting from them; see Fig. 5. In Ref.
with Am=0, that have the sam® uppermost rows, rather [12] we show that the calculation presented in this section
than represent the probability of the configurationlone.  can be used to solve exaciiyo approximationsthe case of
This is analogous tg”z‘ in the example above, see Sec. Il B. site-DLA with N=3.

After the finite set of configurations is chosen, the configu- The first configuration j(=1) grows upward with prob-
rations are indexed with arbitrary consecutive numbersability 1, thusp,,(1)=1. The resulting configuration is
Then, the growth probabilities for each configuration are=2, thusE, ;=1 andE; ;=0 for i#2. This concludes the
computed by solving the Laplace equation and by taking intaonstruction of the first column of the evolution matrix.
account the bond multiplicity. Each growth process results in In order to obtain the other growth probabilities we have
a different final configuration, which must be identified with to solve the relevant Laplace problems, for which we need
one of the configurations in the finite set. Special attention ishe Green'’s function according to E(L.11). For N=3 we
required for the upward growth processes, which might rehave k,=(2#/3)l for 1=0,1,2. We recall thae “®=gq

sult in configurations witlAm>0, which do not belong to —/q?—1, whereq=2—cosk) [15] and find that

the finite set. This is rectified by truncating the bottom row

of the interface(considering it as fully occupied The total e "o=1,
upward probability for each configuration is added up and
stored in a functionp,(i), later to be averaged over the . ,,(2_5—\/ﬁ 31
steady-state distribution of configurations. The growth prob- e =e = 2 @
abilities are arranged in the evolution matig, whose fixed
point corresponds to the steady-state distribution of configuand thus
rations, which is required for evaluating,,*, p andD.
Because the matrix is finite, the existence of at least one 1 S5— \/Z _G—m
3 2 3
(a) {b) 3.2
Vo 1-g3(0) V21-3
H Lo g5(1)=03(2)= = .
L 2 6
N | ——» - .
N | ‘&_ These values obey the normalization conditiaril2).

Because of the symmetry of the configuratipn2, the
FIG. 4. Configuration(a), with Am=2, is truncated by taking Potential can be expressed in terms of one variable

only the top row, and turns into configuratiéb), with Am=1,in  =®(0,0)=®(0,2), as shown in Fig. 6. This kind of figure

the first-order approximationQ=1). demonstrates the distribution of the potentda{m,n) over
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4x=g3(0)x+1,

1+ 2g5(1)z
m=t 1Al :>x=6_5\/ﬁ=0.2835. 3.7
m=0
There are three bonds leading to growth in site (1,0), which
= 0 1 2 results in the configuration=1, hence

FIG. 6. A “potential diagram:” the potential®(m,n) of the _3 _
configurationj =2, expressed in terms of the variable E1~3_§X_O'2835' (3.8
the lattice, and thus we call it a “potential diagram.” The The upward growth process resultsiin 2 after truncation,
potentials®(1,0)=d(1,2)=1+(1—gs(1))x do not corre- and has probability
spond to a growth process, but are important for solving for )
X. The potentiatb (1,1)=1+2xg;(1) corresponds to the up- B =S (14 aa(1)x)=0.71
ward growth process. The Laplace equationXds Pup(3)=Eo5=3(1+05(1)0)=0.7165. (3.9

Ax=Xx+(1—g3(1))x+1, The third element in the column 3 3=0, which concludes
the calculation of the elements of the evolution matrix,
9—-+y21
=X= 1\é—=0.4417. (3.3 0 0 0.283
EGD=|1 0.4110 0.7165%, (3.10
Growth in both sites (0,0) and (0,2) results in configuration 0 05890 0
i=3, hence
where the superscript indicates that it is the first-order ap-
4 18-2\21 proximation forN=3. The upward growth probabilities se-
Ej = sx=——-——=0.5890, (3.9 L
“ 3 15 ries is
where the numerator, 4, is inserted because there are two Pup=(1,0.4110,0.716K (3.1

bonds for each of the two growth sites, and the denominator i
is the normalization factoN=3. A growth process in site Which happens to be equal to the second row of the matrix.

(1,1) results in an interface that does not belong to our finite *The normalized*fixed point of the matrix B} =0.0951,
set. In this approximation we only take into account the top2 =0.5695 andP3 =0.3354. The average upward growth
most row of the interface, and therefore this interface is idenProbability is

tified with configurationi=2, i.e., 3
2xg5(1)+1  2y21-3 (Pup* = 2, P pugli) =0.5695. (3.12
22— 3 T =0.4110. (3.5

We have performed some DLA simulations in the cylindrical
The transition toi=1 is impossible, hence;,=0. It is ~ geometry for several values df and measuredp,,)* [19].
easy to check that the second column of the matrix is norThe value obtained from simulations fiir= 3 is 0.5462. The
malized, i.e., 2% ,E; ,=1. The total upward growth prob- typical accuracy is on the order of 16 The steady-state
ability for this configuration is average density and fractal dimension are evaluated using
Egs.(2.20 and(2.22),

Pup(2)=Ej,=0.4110. (3.6)
The potentials of configuration=3 are described in pP= 3(pu)* =0.5853, (0.6103,
terms ofx=®(0,1), as in Fig. 7. The Laplace equation is Pup (313
In({pup)*) '
1+ gs(D)z D—1—W—1.5125, (1.5508.

The values in parentheses are obtained from the same formu-
las, using the simulation value ¢p,,)*. The two other ei-
genvalues are complexg ;= —0.29+0.28, so according to

Eqg. (2.42 r=1.10.

. . =3
\ / B. Higher-order approximations for N=3

The possible configurations of the interface in the second-
order approximation are listed and indexed in Fig. 8. The
FIG. 7. The “potential diagram” for configuratiop= 3. growth probabilities for the first three configurations were
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j=1 j=2 j=3 j=5
I | I —— I |

@i §§_\§ 1+ g3(1)(x +y)

1+g3(1)z + 93(6)7> 1+ g3(0)z + g3(l)y

M
j=4 j=5 /=6 =7 &

o
Y

=

FIG. 8. Possible configurations in the second-order approxima- Configuration 5 is shown in Fig. 10. The Laplace equa-
tion for N=3. Note that the first three configurations; 1,2,3, are  tions are
the same as in the first-order approximation.

FIG. 10. The “potential diagram” for configuratiop=5.

4y=yl4+x+x03(1)+ygs(0)+1,
already computed in the previous section, but a rearrange-

ment of the upward growths is required in the evolution ma- 4x=y+03(0)x+gs(1)y+1,

trix. Now, the upward growth from configuratiop=2 no U (3.16
longer stays at=2, but rather makes a transition te-4,
and the upward growth frof=3 results ini=>5 instead of y=0.4808,

i=2. Thus, we copy the previous evolution matE$-") into

the upper left corner of the new matr&(®? with the re- x=0.4557.
placementsES%I=0, EGP=ESY, EFP=0, andELY  The growth probabilities are
=ES4. The unspecified elements in the first three columns

are all equal to zero. . _ E, 5:zx:0.3038,
The next step is to go over each of the remaining configu- 3
rationsi=4, ...,7, andcompute their probabilities, which
are inserted into the evolution matrix according to the final E, 5=X=O.16O3
configuration in which the relevant growth process results. 3 ’
Configuration 4 is shown in Fig. 9. The Laplace equation is 3 (3.17
4y:y+x, E2,5:§V/4:012021
Ax=x+y+1+(1—gs(1))X, 1+03(1)(x+y)
Ejs=———F——=0.4157.
(3.149 45 3
3
=x=;(7- J21)=0.5180, The upward growth probability ip,,(5)=E, 5= 0.4157.
Configuration 6 is shown in Fig. 11. The Laplace equa-
tions are
y=x/3=0.1727.
4y=y/4+X,
The growth probabilities are
Ax=y+g3(0)x+1,
2
E6’4:§X:0.3453, U (31&
15
4 4 X= 1—1(26—5\/2_1)=0.3067,
Esq=3Y=gX=0.2302 (3.19 >
p— 4 j—
1+2xgs(1) T
Esq= 3 =0.4244.
j=6
The upward growth probability ip,(4)=E4 ,=0.4244.
1+ gg(l):c
> 1+ 2g5(1)z
=
- oo || ]

k N

FIG. 9. The “potential diagram” for configuratiop=4. FIG. 11. The “potential diagram” for configuratioj=6.

y/
I



2542 BOAZ KOL AND AMNON AHARONY PRE 62

The growth probabilities are

2
Eq 6= 3x=0.2044,

2 8
E3,6:§y: ZSX: 00545,

3 (3.19
E7’6=§y/4= x/15=0.0204, FIG. 12. The “potential diagram” for configuratiop=7.

2 The growth probabilities are
Es6=3(1+03(1)x)=0.7206. ,
E1'7:§X: 02304,

The upward growth probability ip,,(6)=Es ¢=0.7206.
Configuration 7 is shown in Fig. 12. The Laplace equa-

. 3
tions are Eq7=3%/4=0.0763, (3.21
Ax=x/4+g5(0)x+1,
2
l (3.20 Es7=3(1+03(1)x)=0.7203.
12 The upward growth probability ip,(7)=Es,=0.7203
= — — = 8) 5,7 . .
x=1oe(21 4./21)=0.3051. In summary.
J
[0 0 02835 0 0  0.2044 0.2034
1 0 0 0 01202 0 0
0 05890 0 0  0.1603 0.0545 0.07B3
EG2=|0 04110 0  0.4244 04157 0 0, (3.22
0O 0 07165 0.2302 0  0.7206 0.72p3
0 0 0 03453 0 0 0
0 o 0 0 0.3038 0.0204 O |
pup=(1,0.4110,0.7165,0.4244,0.4157,0.7206,0.7203 (3.23

One can check that elements in each column of the matriwhere once again, the values from simulation are shown in
sum up to 1. Note that the majority of the elements are nullparentheses. It is apparent that the addition of configurations
The normalized fixed point is, increases the accuracy of the results. The eigenvalues with

the largest absolute valugsxcept for 1) areng,=—0.34
P*=(0.0685,0.1011,0.1145,0.2680,0.2711,0.0925,0.0843 +0.4d, hencer=1.6.

(3.29 The third-order approximation yields 17 configurations.

The final results are

with which we compute some steady-state quantities,
17

’ * * H
. = P: )=0.5460, (0.5462,
(Pup™ = 2, 7 pu(j)=0.5459, (05463, (Pus* = 2, P Pu (

p =0.6106, (0.6103 (3.29 p= —=0.6104, (0.6103, (3.26
’ ’ 3(Pup

B 3(Pup ™

~In((pup*)
In(3)

In((Pyp)*)

D=1 In(3)

=1.5510, (1.5508, D=1- =1.5507, (1.55086.
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0.14 T T T T T T T j=2
1+ [94(0) + gs(2)] & + 941}y
1+ 2g4(1)z + g4(2)y

012

01r T -

1+94(0)y + 2g4(1)z
‘\0.08-
Y
0.06| 1 FIG. 15. The “potential diagram” for configuratiop=2.
004 1 1+2(2—3)+3—8 V3+42
04(0)= ( \{4_) \/—=2— > \/_=0.4269,
0.02[
1-3++8 2-1
o 074 ofs 076 of7 . ors ofg 1 94(1)294(3)2 = =0.2071, (3.27)
Pyplf) 4 2
FIG. 13. The distribution ofp,, over configurations for the 1—2(2—/3)+3—./8 3—.2
third-order approximation foN=3. 04(2)= ( \{4_) \/—: \/—2 \/_:0.1589.

The eigenvalues with the largest absolute valigsept for
1) are\g,=—0.34+0.40, hencer=1.6. Once again, Eq(1.12) is obeyed.

It is interesting to inspect the histogram of the distribution ~ Figure 14 displays the relevant configurations. Configura-
of pyj), illustrated in Fig. 13. One immediately observestion j=1 grows into configuration=2 with probability 1,
that the upward growth probabilities are clustered in thredhusE; ;=1 andE; ;=0 fori#2. Also, p,,(1)=1.
groups: the top one at 1, the second just above 0.7 and the Configurationj=2 is shown in Fig. 15. The Laplace
third, just above 0.4. It is easy to check that the top oneequations are
corresponds to the configuratios 1, the middle group cor-

responds to configurations that have two particles at the top AX=y+04(1)y+(94(0) +94(2))x+1,
row, and the bottom group corresponds to configurations
with one particle at the top row. This suggests that perhaps Ay =2x+g4(0)y+2g,(1)x+1,

17 different configurations are excessive, and the real num-
ber of effective configurations is around 3. An interesting

guestion is whether it is possible to further reduce the num- U (328
ber of configurations in higher-order approximations by in-
cluding only “effective” ones. x=0.5148,

C. First-order approximation for N=4 y=0.6277.

Our last example is the cade=4, for which we present S
the first-order calculation. First, we calculate the Green's' "€ nonzero growth probabilities in the second column are

function g,(n) according to Eq(1.11). For N=4, there are 5322(4/3))(:0'5148' E4Y2=_(1/4)y=0.1569, and Bz,
four possible values fok and x, namely, k=(2a/N)l  — (/AL +204(1)X+9a(2)y)=0.3283=p,(2).
—0,m/2,m,(312)m, € =1, e x1=¢ %=2-3, and Configurationj =3 is presented in Fig. 16. The Laplace

e K2=3— \/g Hence, equation Is

4x=x+(94(0) +94(1))x+1,

(3.29
=x=0.4226.
j=2 y
1+ [g4(0) + ga(1)] =
1+ [ga(1) + g4(2)] =
j=4
mE
S oo

FIG. 14. Possible configurations in the first-order approximation
for N=4. FIG. 16. The “potential diagram” for configuratiop=3.
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j=4

1+ [94(0) + ga(2)] =

FIG. 17. The “potential diagram” for configuratioj=4.
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The nonzero growth probabilities in the third column are

Es 3= (4/4)x=0.4226 andE; ;= (2/4) 1+ (94(1)+94(2))x]
=0.5774=p «3).

Configurationj=4 is shown in Fig. 17. The Laplac

equation is

4x=(94(0)+g4(2))x+1,
(3.30
=x=0.2929.

The nonzero growth probabilities in the fourth column are

Es 4= (6/4)x=0.4393 and  Ej4=(2/4)(1+294(1)x)

=0.5607 py(4). Note that this configuration already ap-

peared folN=2.

The last configuration is shown in Fig. 18. The Laplace

equation is

4x=1=g,(0)x,
(3.31)
=x=0.2799.

FIG. 19. The two top rows of a configuration are showr@n
Two possible extensions for the rest of the configuration below are

e (b), with a filled row right below the configuratiotthis boundary

condition is used in the calculations presented in this papefc),
with the bottom row of the configuration repeating itsatf infini-
tum, creating an infinite fjord.

(Pup* =P3% =0.4954, (0.4657,

- =0.5046, (0.5368, (3.33
" a(puy*
o In(pyp*)

D=1— —ha) - 1.5066, (1.5512,

where again, the values in parentheses are from simulation.
The eigenvalues with the largest absolute value after 1 are
Ng,=—0.16+0.38, hencer=1.1.

It is also possible to conduct these calculations using dif-
ferent boundary conditions at the bottom; rather than assum-
ing that there is a filled row of occupied sites below the
configuration, it is possible to assume that each unoccupied

The nonzero growth probabilities in the fifth column are site at the lowest row of the configuration is above an infinite

E, <= (3/4)x=0.2099 and  E,g=(1/4) 3+ (9a(2)

fiord that extends all the way below. The two possibilities

+204(1))x]=0.7901= p(5). This concludes the calcula- are explained in Fig. 19. Performing the calculations with

tion of the 55 evolution matrixe*%).
The steady-state vector is

P* = (0.0298,0.4954,0.2551,0.0777,0.1420(3.32)

infinite fjords is a bit simpler, because there are fewer con-
figurations, e.g., the configuratios=4 would not appear in
the first-order approximation fdd=4 [19].

D. Higher-order computations

It enables us to calculate the following steady-state quanti- As one increasel and the order of approximatiad, the

ties:

/=5
1+ g4(1)z

1+ ga(2)z {1+ ga(0)z

__ I

N
a

FIG. 18. The “potential diagram” for configuratioj=5.

number of configurations increases exponentially, and it be-
comes harder to go over all of them manually. However, it is
possible to construct a computer algorithm to perform the
procedure described here. The main challenges are the auto-
matic configuration recognition and automatic computation
of the exact growth probabilities per configuration. In this
section we explain the algorithm and report some of the im-
portant results.

The algorithm follows the method outlined in the ex-
amples of the previous sections, i.e., it goes over all the
possible configurations of the interface. In the sample calcu-
lations we have initially made a list of all the possible con-
figurations, called the index. Instead of doing this, the pro-
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gram starts with only one configuration, namely the flat one (a) {b)

(all the sites of the top row of the aggregate are occypied Coro P
which is indexed byj=1. This configuration grows with 1]
probability 1 to a new configuration that has one particle at INA
the top row, while the row below it is fully occupied. This

new configuration is inserted into the list of configurations
g g FIG. 20. Even though configuratiqa) and(b) are not identical,

with an indexj =2. Therefore, the program sefs ;=1 and . .
(1)=1. Then the program continues by handling the nex they are equivalent because they have the same growth probabili-
Pug : tties. Both configurations have the same external interface contour,

qonflguratl?n n thhe Il-lst,lnamely= 2.‘ For e%ch clonfllgura- hWhich is characterized by the set of sites that are connected to
tion, It so Ves, _t, e Laplace equations and calculates t ﬁwfinity. In this example there is only one such site, which is not
grOV\_/th prc_)babllltles. anh growth progess m_ay create a neWigher that the aggregate, and it is marked by a circle.
configuration. The resulting configuration is first checked for

consistency with the desired orde; configurations which e for mirror images. Instead of taking all of them into

haveAm=>O are truncated, as in Fig. 4. One then comparegccount, we choose one as a canonical representative of the
each “new” configuration with the existing list of configu- \ynole set of symmetric configurations.

rations. If it does not exist in that list it is added at the end of  The results are summarized in Table 1. By comparing the
the list, and indexed consecutively. If the index of the con-approximations to accurate results from simulations, it seems
figuration that results from the growth process iand the  that in order to obtain a relative accuracy of about10ne
index of the initial configuration i$ then the growth prob- a5 o use at least an order of approximatiorOof N—2
ability is inserted into the matrix elemeh ; . The total sum (except forN =3, where one still has to use the second-order
of all the upward growth probabilities of the initial configu- approximation. This becomes very difficult already fod

ration j is stored inpy(j). The main loop stops when the _g \yhere in the fourth-order calculation there are 49678
program finishes to process the last configuration in the ingitferent configurations up to symmetry.

dex list. At this stage the Markovian evolution matixis
irreducible and closed, i.e%E; ;=1 for everyj. Then the
fixed pointP* is calculated, by taking an initial vector and
iteratingE on it many times until it converge$or very large This paper treats DLA as a Markov process. The Markov
matrices this is much faster than using any of terLAB states are the possible shapes of the interface, and the Mar-
library functions. The average upward growth probability is kovian evolution matrixE is calculated analytically using
calculated using exact solutions of the Laplace equations, with proper normal-
izations. We propose a truncation scheme that takes into ac-
* _ * ; count only a finite number of states. The states are ordered
(Pup) 2 PT Pupll): (3.39 according to the maximal difference in height between the
highest and lowest points on the interfadam, and in each
the average density and the fractal dimension are then congrder of truncationO, only the states witlhm=O are in-
puted using the left-hand side of E@.20 and Eq.(2.22. cluded. We justify this approach by the fact that the potential
One of the challenges of the computer algorithm is the® decays exponentially in deep fjords, and thus the shape of
recognition of configurations. This recognition is importantthe interface in its deeper parts has very little effect on the
so that each growth process will be inserted into the evolugrowth probabilities. We perform this calculation fr=2,
tion matrixE; ; with the correct index (j is the index of the and verify that indeed it converges to the known analytic
configuration before growih The recognition may be diffi- solution. We adopt the same approach for higher values of
cult because configurations that seem different may actuallthe width N, between 3 and 7, and calculate the average
be equivalent. By equivalent we mean that they have thélensityp in good agreement with simulations. The fact that
exact same set of transitiggrowth) probabilities. The solu- the number of configurations grows exponentially with
tion to the Laplace equations is determined uniquely by theénd withO, makes the computation less effective than simu-
shape of the interface, therefore all of the configurations witHation for largeN.
the same external interface are equivalent. The description of We observe that the method converges as a functi@, of
the interface is not a trivial task though. We find that analso for higher values oN. Let us denote the calculated
efficient way to characterize an interface is by the set ofiverage steady-state density of an aggregate of vidih
empty sites that are connected to infinity. Of course, it isthe O’th-order approximation by.(N,O). We observe that
sufficient to specify only empty sites that are not higher tharp.(N,O) converges to a finite limit very rapidly as a function
the highest particle in the aggregate, because all of the emptyf O. In fact, a relative accuracy of 16 is achieved forO
sites above it are connected to infinity. Figure 20 shows a=N—2 (except forN=3). This enables us to obtain accu-
example of two configurations that are not identical, but theyrate results for 3xN=<6. The drawback of this method is
have the same exterior contour. Both of them have a singléhat the number of configurations diverges exponentially
empty site that is connected to infinity. with O and N, and therefore it is possible to perform the
In order to reduce greatly the number of configurations itcalculations only for relatively lowN’s and O’s. Our com-
is advisable to take symmetry into account, i.e., all the conputer was strong enough to perform the calculation only in
figurations which can be obtained from one another using ¢he third-order approximation foN=7, and therefore the
rotation around the axis of the cylinder have the same growthesult forN=7 is not very accurate. One would hope that it
probabilities and the same steady-state weights. The samernsay be possible to perform low-order approximations for

IV. DISCUSSION
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large N’s and then extrapolate, in order to estimate the restrated using the simple model of the frustrated climber. The
sults for largeO’s. Indeed, it is reasonable to conjecture theconvergence is described in terms of the eigenvalues of the
scaling lawp(N,0) =p(N)f(N/O), wherep(N) is the ex- Markovian matrix, and in terms of the infinite shift-down
act (O—) density, as a function oN, and f(N/O) is a  operator.
universal scaling function that obeys lim f(x)=1. Our Considering the flga%tal dimensi_on, Pi_etronaalnal. sug-
investigation shows that in spite of the fact that the conjeoge.sn:fd thatp(N)=N""", as me“t'o"‘ed n E_q(2.2]). In. .
ture is not very accurate f@=1 andO=2, it is quite good p'I’InCIp|e, one should always include an amplitude and finite
for higher values 00, and presumably also for higher values size corrections of the form
of N. This scaling relation may help to perform the extrapo-
lation O— < for higher values of\. Paradoxically, it is very
hard to obtain data points for largé&s andQO’s, and thus to
extract the scaling function accurately. Thus we are unable totherea=d—D, andA andB are constants. The second term
make the extrapolation even fbd=7, and we estimatg(N) ~ appearing in Eq(4.1) is a correction to scaling term. Gener-
by the highest-order approximation available. However, wedlly, there is an infinite sum of such terms with higher nega-
suggest an alternative way to obtgip(O,N), namely by tive powers ofN. Because we have data only for small values
simulation: it is possible to perform a regular DLA simula- of N, these correction terms may be large, but since we have
tion in cylindrical geometry, only that one has to keep theonly a few accurate data pointp(N) for N=2,3,...,6),
O’th row below the highest particle in the aggregate con-we try to extract the parametets A and B only, and not
stantly filled. Measuring the average density of the aggregatBigher-order terms. Using the three resultsor 4,5,6, we
in such a simulation would approximaie.(N,0). This  determine the three unknown parameters toAs€0.82, B
simulation would be faster than a regular simulation, because 0.35, anda=0.362, henceD =1.64. The deviation from
particles would stick faster, due to the fact that they have lesthe well known value oD =1.66 can be attributed to sys-
free space. This study would perhaps yield the scaling functematic error due to the omission of higher-order finite size
tion f(N/O), and enable extrapolation of lower order ap- correction terms. We fit simulation d&ta9] for N=3, 4, 5,
proximations for higheN'’s, should anyone venture to per- 6, 7, 32, 48, 64, 96, 128, to a higher-order approximation
form them on more powerful computers. In light of this p(N)=AN"“(1+ B/N+ C/N?), and find thatC= —0.205,
discussion we suggest a more efficient way to perform DLAB=0.561, A=0.761, ande=0.339, which means th&dd
simulations in cylindrical geometry. We argue that one car=1.661. The maximum relative error of the fit is 1.2
obtain a relative accuracy of 18 if one follows just theN X 103, and the average relative error is X.00" 3, which is
—2 topmost rows of the aggregate. This should save somi good agreement with estimated accuracy of the simula-
time, because the diffusing particle would stick faster, and itions.
would also require less memory. This is not to say that it is
sufficient to grow the aggregate until it reaches a height of
N—2, but rather, to perform many more growth processes,
and each time the aggregate reaches a height-ot, trun- We wish to thank Barak Kol and A. Vespignani for help-
cate the bottom row. ful discussions. We also wish to thank Yiftah Navot for help-
We also discuss the temporal rate of convergence of thing with the computer program, by suggesting more efficient
system to its steady state. In this context we find that there idata structures and algorithms. We thank Nadav Schnerb for
an exponential convergence to the steady state, and we calffering the frustrated climber metaphor. This work was sup-
culate the characteristic time constant This is demon- ported by a grant from the German-Israeli FoundatiGif).

p(N)=AN"*(1+B/N+ ...), 4.1
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