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Diffusion-limited aggregation as a Markovian process: Bond-sticking conditions

Boaz Kol and Amnon Aharony
Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy,

Tel Aviv University, 69978 Ramat Aviv, Israel
~Received 14 February 2000!

Cylindrical lattice diffusion limited aggregation~DLA !, with a narrow widthN, is solved using a Markovian
matrix method. This matrix contains the probabilities that the front moves from one configuration to another at
each growth step, calculated exactly by solving the Laplace equation and using the proper normalization. The
method is applied for a series of approximations, which include only a finite number of rows near the front.
The matrix is then used to find the weights of the steady-state growing configurations and the rate of approach-
ing this steady-state stage. The former are then used to find the average upward growth probability, the average
steady-state density and the fractal dimensionality of the aggregate, which is extrapolated to a value near 1.64.

PACS number~s!: 61.43.Hv, 05.20.Dd, 02.50.Ga
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I. INTRODUCTION

Diffusion-limited aggregation~DLA ! @1# has been the
subject of extensive study since it was first introduced. T
model exhibits a growth process that produces highly ra
fied self similar patterns, which are believed to be fract
@2#. It seems that DLA captures the essential mechanism
many natural growth processes, such as viscous finge
@3#, dielectric breakdown@4#, etc. It is now understood tha
the Laplace equation, which is common to all of these p
cesses and to DLA, has a major role in the resembla
between them. One of the interesting features of DLA is t
there are no parameters to fine-tune in order to obtain a f
tal. It thus differs from ordinary critical phenomena, and b
longs to the class of self-organized criticality~SOC! @5#. In
spite of the apparent simplicity of the model, an analy
solution is still unavailable. Particularly, the exact value
the fractal dimension is not known. Some of the analy
approaches employed so far include the fixed scale trans
mation ~FST! @6#, real space renormalization group~RSRG!
@7–9# and conformal mapping@10,11#.

In DLA there is a seed cluster of particles fixed som
where. A particle is released at a distance from the clus
and performs a random walk until it attempts to penetrate
fixed cluster, in which case it sticks. Then the next particle
released and so on. There are two common types of stic
conditions. The sticking condition described above is cal
‘‘bond-DLA,’’ because it occurs when a particle goes into
perimeter bond. In ‘‘site-DLA,’’ sticking occurs as soon a
the particle arrives in a perimeter site. This paper deals w
bond-DLA, whereas site-DLA will be considered elsewhe
@12#. The large scale structure of DLA is not sensitive to t
type of sticking conditions used@13#.

It has been shown that bond-DLA is equivalent to t
dielectric breakdown model~DBM! with h51 @4,14#. DBM
is a cellular automaton that is defined on a lattice. It cons
of the following steps: one starts with a seed cluster of c
nected sites and with a boundary surface far away from i
field F, which corresponds to the electrostatic potential
found by solving the discrete Laplace equation on a latti
PRE 621063-651X/2000/62~2!/2531~16!/$15.00
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¹2F50, ~1.1!

with the following boundary conditions: the aggregate
considered to have a constant potential that is usually se
0, and the potential gradient on the distant boundary is se
1 in some arbitrary units~some use a constant potential o
the distant boundary instead!. In this paper we set the distan
boundary at infinity, and ignore the exponentially small fin
size corrections. After solving the discrete Laplace equat
~1.1!, the field F determines the growth probabilities pe
perimeter bond. More specifically, the growth probabiliti
are proportional to the electric field to some powerh. The
electric field is simply equal to the potential difference acro
each bond. Because the potential is set to 0 on the aggre
the electric field is equal to the potential value at the si
lying across the perimeter bonds. Thus,

Pb5
uFbuh

(
b

uFbuh
. ~1.2!

Here,b is the bond index.
DLA and DBM can be grown in various geometries. B

geometry we refer to the dimensionality of the lattice, to t
shapes of the boundaries and to the details of the seed
growth ~usually a point or a line for two-dimensiona
growth!. For instance, the case in which the distant bound
is a sphere is called radial boundary conditions, and the c
in which the boundary is a distant plane at the top, while
seed cluster is a parallel plane at the bottom, with perio
boundary conditions on the sides, is called cylindrical bou
ary conditions. In this paper we only consider the cylindric
case, with a relatively short period length~width!, from N
52 to about N57, although the method described he
could also be used for wider cases.

Recently we published an exact solution to DLA in cyli
drical geometry of widthN52 @15#. The present paper gen
eralizes and extends that solution. Our approach follows
dynamics of the interface. The interface alone determines
growth probabilities at each time step, and whatever
2531 ©2000 The American Physical Society
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2532 PRE 62BOAZ KOL AND AMNON AHARONY
behind it is irrelevant. This is because the solution to
Laplace equation is unique, provided that the boundary c
ditions are well defined. We now give a brief summary
Ref. @15#. The characterization of the interface forN52 is
simple; the interface isfully characterized by a single param
eter ~usually denoted byi or j ), which corresponds to the
height difference between the two columns. This height d
ference, referred to as the step size, can be infinitely la
see Fig. 1. If the interface is flat (j 50), one can assume tha
the next particle will always stick on the right side, witho
limiting the generality of this discussion. This means that
step size can always be considered as non-negative.
Markovian dynamics is then presented using the Ma
equation,

Pi~ t11!5(
j 50

`

Ei , j Pj~ t !, ~1.3!

wherePj (t) is the probability that the step size isj at timet,
andEi , j is the time independent conditional probability th
an initial step sizej will become i after the next growth
process. An example with several possible transitions
shown in Fig. 2.P(t) is called the state vector andE is called
the evolution matrix. In principle, a similar Master equati
can be written for more complex growth situations, provid
the various configurations can be indexed with a single in
j. Being made out of conditional probabilities, the eleme
of the evolution matrix obey that,

0<Ei , j<1, i , j 50, . . . ,̀ ,

FIG. 1. The coordinates (m,n) describe the location on a lattic
that is two sites wide. The gray sites belong to the interface of
aggregate, which is shaped as a step of sizej.
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`

Ei , j51, j 50, . . . ,̀ . ~1.4!

After many iterations of Eq.~1.3! the system converges to
fixed pointP* , also called the steady state, which represe
the asymptotic time distribution of the step sizes. From
steady state and the evolution matrix we are able to ext
the average upward growth probability^pup&* , the average
densityr and the fractal dimensionD.

In order to obtain an analytic expression for the eleme
of the evolution matrix, one must first solve the Lapla
equation. Having found the solutionsF(m,n), the growth
probabilities are found from Eq.~1.2!. The denominator
there, which comes from the normalization, is particula
simple for the special case ofh51, where the discrete ver
sion of the divergence theorem implies that@15#

(
b

Fb5N. ~1.5!

The actual growth probability into a site is then found fro

psite5 (
bonds into site

pb . ~1.6!

The solution of the Laplace equation is now divided in
two parts. In the first part, we solve the Laplace equation
the ‘‘upper’’ part of space, which starts just above the hig
est particle of the aggregate and continues upwards to in
ity. In the example of Fig. 1, this part contains all the row
with m>0. As we explain below, this solution is complete
determined by the boundary conditions and by the value
the potential at the row withm50, i.e., $F(0,n)%. We then

e

FIG. 2. Possible growth processes that change the interface
an initial step sizej 53 to a final sizei 54,0,1,2. The growth prob-
ability is determined by the potential and the number of bon
associated with the site where growth is to occur.Ei , j is the condi-
tional probability to grow from an initial step sizej to a final step
size i. The normalization follows from Eq.~1.10!.
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PRE 62 2533DIFFUSION-LIMITED AGGREGATION AS A . . .
solve the Laplace equation for the ‘‘lower’’ part (m<0 in
Fig. 1!, and find the values of$F(0,n)% from matching the
two regimes. The solution in the ‘‘upper’’ part is given as
combination of solutions of the form@15#

F~m,n!5ekm1 ikn, ~1.7!

with the dispersion relation

sinhS k

2D56sinS k

2D ~1.8!

and with the discrete set of allowed valueskl5(2p/N) l ,
which follow from the periodic lateral boundary condition
which require thateikN51. The boundary conditions at in
finity have a uniform gradient, i.e.,

lim
m→`

@F~m11,n!2F~m,n!#51, n50, . . . ,N21.

~1.9!

Given the arbitrarily set of valuesF(0,n), the solution for
the rowm51 is

F~1,n!511 (
n850

N21

F~0,n8!gN~ un2n8u!, ~1.10!

where

gN~n![
1

N (
l 50

N21

e2k l cos~kln!, n50, . . . ,N21,

~1.11!

is the boundary Green’s function, andk l corresponds tokl
via the dispersion relation~1.8!. The solution is given only
for m51, because we are only interested in the potentia
sites near the interface. Note that the Green’s function
the general property

(
n50

N21

gN~n!51 ~1.12!

@15#. It is therefore good practice to check this normalizati
for each of the calculations presented below. Indeed, all
results obey this rule.

In general, the solution in the ‘‘lower’’ regime is compl
cated by the variety of configurations. However, this solut
is very simple forN52, whenF(m,0) is a linear combina-
tion of ek fm ande2k fm. SinceF(2 j ,0)50, one is left with
one unknownF(0,0), to be determined by the matching
row 0.

For the special caseN52, the above procedure has led
the exact solution@15#
at
as

ur

n

Ei , j55
y~`!e2k f i

12e22k f ( j 2 i )

11be22k f j
, 0< i< j 22

3

2
y~`!e2k f ( j 21)

12e22k f

11be22k f j
, i 5 j 21

E`11,̀ S 12a
e22k f j

11be22k f j D , i 5 j 11

0 otherwise,

j >1, ~1.13!

where

E`11,̀ 5 lim
j→`

Ej 11,j5
11g2~1!y~`!

2
50.5658 . . . ,

~1.14!

y(`)5A32A250.3178 . . . , e2k f522A350.2679 . . . ,
a5(11b)g2(1)y(`)/(2E`11,̀ )50.1281 . . . and b
552A2450.1010 . . . . For j 50, the interface will trans-
form into a step of sizej 51 with probability 1, henceE1,0
51 andEi ,050 for iÞ1. The values ofEi , j for 0< i , j <4,
up to the fourth decimal digit, are

E53
0 0.4393 0.3160 0.3177 0.3178•••

1 0 0.1185 0.0847 0.0851

0 0.5607 0 0.0318 0.0227

0 0 0.5655 0 0.0085

0 0 0 0.5658 0

A �

4 .

~1.15!

The first diagonal below the main, which represents
probabilities for the step to grow larger by one,Ej 11,j , ap-
proaches its asymptotic value ofE`11,̀ 50.5658 . . . expo-
nentially, as the third row of Eq.~1.13! indicates. The diag-
onal above the main represents the probabilities for grow
at the bottom of the fjord,Ej 21,j , and corresponds to th
second row in Eq.~1.13!. These probabilities decay expone
tially as the step sizej grows. According to the first row in
Eq. ~1.13!, the elementsEi , j converge exponentially for large
j ’s to a simple exponential function,

Ei ,`5 lim
j→`

Ei , j5y~`!e2k f i . ~1.16!

These probabilities relate to the transition from a very la
step to a step of sizei. Next, the steady-state vectorP* is
computed and used to evaluate the average upward gro
probability ^pup&* , which in turn, determines the averag
densityr and the fractal dimensionD. These computations
are explained later in Sec. II.

Our previous paper does not specify details concern
the manner in which the system converges to the steady
in time. Besides addressing this issue, our present paper
treats DLA grown in wider geometrical periods~still in cy-
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TABLE I. The two-dimensional approximate results for various channel widthsN and for different orders
of approximationO. The quantities presented in each table cell are the average upward growth prob
^pup&* and the number of configurationsNc . The approximate results are compared with simulations.

N/O Simulation 1 2 3 4 5 6

3 0.5462 0.569 489 0.545 911 0.546 046 0.546 126 0.546 132 0.546
3 7 17 45 127 371

4 0.4657 0.495 435 0.464 571 0.465 395 0.465 730 0.465 765 0.465
5 20 98 575 3640 23 676

5 0.4106 0.444 088 0.407 582 0.409 497 0.410 414 0.410 547
7 47 457 5539 69 791

6 0.3696 0.405 619 0.364 352 0.367 295 0.369 172
12 131 2217 49 678

7 0.3377 0.375 448 0.330 112 0.333 622
17 337 10 403
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lindrical geometry!. The basic approach is the same, i.e.,
try to characterize the possible configurations of the interf
for wider periods, and then write the evolution matrix, whi
is composed of the growth probabilities, which are compu
from the Laplace potential, after proper normalization. T
first difficulty encountered is in the characterization. For e
ample, already for a width ofN53 one cannot characteriz
the interface using a single parameter as in the caseN52,
nor is it easy doing so using two parameters, or more.
stead, we make a manual list of possible configurations
the interface, which we then order according to the diff
ence in height between the highest and lowest points on
interface. This difference is denoted byDm. Our order-O
approximation includes only the configurations withDm
<O. In our approximation, some of these configurations r
resent many other~excluded! configurations, in the sense th
they have very similar growth probabilities, especially u
ward. This is because of the screening quality of the Lapl
equation, which causes the potential to decay exponent
inside fjords. Thus, the deeper parts of the interface hav
very small effect on the upward growth probability. The
nite list of configurations is indexed arbitrarily, with an inde
usually denoted byi or j. Our experience shows that accura
results are obtained, only when the order of approximatioO
is comparable to the width of the cylinderN. Thus, for wide
periods, a high-order calculation is called for. This causes
method to be ineffective for very wide periods, because
number of configurations grows exponentially with the ord
of approximation. We conducted calculations up toN57.

After selecting the finite list of configurations and obtai
ing the finite evolution matrix, we compute the steady-st
vector, which is the fixed point of the matrix~the normalized
eigenvector with an eigenvalue of 1). For each configurat
we identify the upward growth processes~when the newly
attached particle is higher than the rest!. We then calculate
the average upward growth probability^pup&* as a weighted
average over the configurations. From^pup&* we calculate
the average densityr and the fractal dimensionD. The com-
puted values of̂pup&* , from different orders of the approxi
mation, are compared with numerical simulations in Table

In Sec. II we introduce a simple Markov process, cal
the ‘‘frustrated climber,’’ which we solve exactly. A sligh
modification of the model is equivalent to site-DLA with
period ofN52, which is presented elsewhere@12#. We then
e
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I.

show a way of successively generalizing the model to
proximate bond-DLA with a period ofN52 and with in-
creasing ordersO. We are able to check the approximatio
by comparing with the exact results of Ref.@15#. This model
also enables us to investigate the rate of convergence to
steady state. In this context we describe the convergenc
terms of other eigenvectors, with eigenvalues whose abso
values are smaller than 1, and in terms of the infinite sh
down operator. We show that the average upward gro
probability converges exponentially in time to its stead
state value, with a characteristic time constant on the orde
unity. In Sec. III we generalize our method to cylindric
DLA with N.2. We present in detail the calculations fo
N53 with O51 andO52, and forN54 with O51. Next
we report on numerical results for wider periods and hig
orders. In the final section we review the results and sum
rize.

II. FRUSTRATED CLIMBER MODEL

Consider someone trying to climb up a slippery infin
ladder. At each time step the climber climbs up one step w
probability 0<p<1, or falls all the way down with probabil-
ity q[12p. We call the climber ‘‘frustrated,’’ because th
probability to get very high is exponentially small. We wis
to compute the probabilityPi(t) for the climber to be at
heighti after t time steps, fori 50, . . . ,̀ . The Master equa-
tion for this problem isP(t11)5EP(t), where the matrix
elementEi , j is the conditional probability that the climbe
moves from heightj to i in a single time step. The rules o
the model imply that

Ei , j5H p, i 5 j 11

q, i 50

0, otherwise

, j >0, ~2.1!

so the matrix looks like this,

E5F q q q q •••

p 0 0 0

0 p 0 0

0 0 p 0

A �

G . ~2.2!
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This presentation helps us see the resemblance to the dy
ics of DLA with N52 in Eqs.~1.13!, ~1.15!: Eq. ~2.2! would
approximate these equations if we were to replaceEj 11,j by
p'E`11,̀ and E0,j by q for all j, and neglect all other
growth probabilities, which are indeed smaller. We shall d
cuss this and better approximations for DLA in the next s
sections. Because the Markovian matrices for the two ca
are similar for largej ’s, we expect that some of the dynam
cal features are similar as well. We therefore present her
exact solution for the frustrated climber model, and then
to draw conclusions for generalized models which repres
successive approximations for DLA. The advantage is tha
the simple model of the frustrated climber it is possible
derive a simple analytic expression for the steady state a
complete description of the temporal convergence.

The steady-state equations for the frustrated clim
model are

Pi 11* 5(
j 50

`

Ei 11,j Pj* 5pPi* , i>0, ~2.3!

⇒Pj* 5qpj , j >0. ~2.4!

One can easily check that this steady state is normalized

(
j 50

`

Pj* 5(
j 50

`

qpj5
q

12p
51. ~2.5!

The average upward growth probability in the steady stat

^pup&* 5(
j 50

`

Pj* pup~ j !5(
j 50

`

Pj p5p, ~2.6!

where pup( j ) stands for the probability to move upward
when the height of the climber isj. In this simple model
pup( j )5p for all j ’s.

We now investigate the temporal convergence to
steady state. We define the vectorv(t) by

P~ t !5P* 1v~ t !. ~2.7!

BecauseP* and P(t) are probability vectors,( j 50
` Pj*

5( j 50
` Pj (t)51, for anyt, hence

(
j 50

`

v j~ t !50. ~2.8!

We substitutev into the dynamical equation and obtain

P~ t11!5EP~ t !5P* 1Ev~ t !, ~2.9!

⇒v~ t11!5Ev~ t !. ~2.10!

Next, we look for the rest of the eigenvectors of the evo
tion matrix @any eigenvectorv with an eigenvaluelÞ1, has
to obey Eq.~2.8!#. Surprisingly, there are no eigenvecto
besides the steady state in this case. The eigenvector e
tions are

lv05q(
j 50

`

v j50,
m-

-
-
es

an
y
nt
in

a

r

is

e

-

ua-

lv i 115pv i~ t !, i>0. ~2.11!

The first equation implies that eitherl50 or v050. In both
cases, the last equation implies thatv50.

We next introduce the infinite shift-down operator,

S[F 0 0 0 0 •••

1 0 0 0

0 1 0 0

0 0 1 0

A �

G . ~2.12!

This operator causes a vector to ‘‘slide down’’ and insert
zero at the evacuated component at the top.S has no eigen-
vectors at all, not even a fixed point~in spite of the fact that
( i 50

` Si , j51 for j 50, . . . ,̀ ). In fact, Ev5pSv for all vec-
tors v with ( j 50

` v j50.
Nevertheless, the convergence ofP(t) to P* is simple.

Starting from any initial state vectorP(t50), the first appli-
cation ofE causes the first component to be set to its stea
state valueP0(t51)5q. At each subsequent iteration an
other component is set permanently:P1(t52)5qp, P2(t
53)5qp2, etc.Pj becomes equal toPj* after no more than
j 11 time steps. The context we are interested in is wid
We wish to compute the convergence of ‘‘observables,’’ i.
the average of an arbitrary functiona( j ), over configura-
tions. We compute the average at timet,

^a&~ t ![(
j 50

`

a~ j !Pj~ t !5^a&* 1(
j 50

`

a~ j !v j~ t !,

~2.13!

where^a&* [( j 50
` a( j )Pj* is the steady-state average. Sta

ing from an initial deviation from the steady-statev(0), each
iteration causes a down shift and a multiplication byp, hence

^a&~ t !5^a&* 1pt(
j 50

`

a~ j 1t !v j~0!. ~2.14!

Equation ~2.14! is the analog of the standard eigenvec
description. We can also identify here the exponential de
of the factorpt. For example, the functiona( j )5d j , j 0

‘‘mea-

sures’’ the probability of the climber to be at heightj 0 ~at
any time!. At time t the observed average probability is

^a&~ t !5Pj 0
* 1ptv j 02t~0!, ~2.15!

for t< j 0, and^a&(t)5Pj 0
* for t. j 0 @16#.

A. First-order approximation for NÄ2

We now return to Eq.~1.13!, and try to approximate it by
a sequence of models which are related to the frustra
climber model. The simplest approximation would follow
we do not let the particle penetrate into the fjord at all. Th
is equivalent to settingk f5` in Eq. ~1.13!. According to
these simplified rules, the particle can either stick at (0
and create a flat step ofi 50, or it can stick at (1,1) and
increase the step height by 1. Let us denote the probab
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2536 PRE 62BOAZ KOL AND AMNON AHARONY
for the former event byq and the latter byp. In the first-order
approximation we takep and q to be independent of the
initial step sizej, unlessj 50, in which case the step siz
increases with probability 1. The Markovian matrixE for
this case is almost identical to the case of the frustra
climber,

E5F q0 q q q •••

p0 0 0 0

0 p 0 0

0 0 p 0

A �

G , ~2.16!

the only difference being in the first column, where we d
noteq050 andp051. In Ref.@12# we show that this mode
is exact for the case of site-sticking DLA forN52.

The solution to this problem is very similar to that of th
frustrated climber, with small modifications. The steady st
is

Pj* 5P0* p0pj 21, j >1, ~2.17!

whereP0* can be determined using the normalization con
tion

15(
j 50

`

Pj* 5P0* S 11p0(
j 50

`

pj D ,

~2.18!

⇒P0* 5
12p

12p1p0
.

The average upward growth probability is evaluated by

^pup
(1)&* 5P0* p01~12P0* !p5

p0

12p1p0
. ~2.19!

The superscript (1) appears because it is the first-order
proximation. We now need to choosep. One possible choice
would be to takep5E`11,̀ 50.5658, because this is th
asymptotic upward growth probability, and then setq51
2p. This would give^pup

(1)&* 50.6973, to be compared wit
the exact value 0.6812@15#. An alternative approximation
would return to Eq.~1.13!, but replacey(`) by q, and then
find q by solving 15p1q5@11g2(1)q#/21q. This yields
p512q522A250.5858, and thereforê pup

(1)&* 5A2/2
50.7071.

We next calculate the average density and the fracta
mensionality. Similar to the argument used by Turkevich a
Scher@17#, we consider a large number of growth proces
n in the steady state. During this growth the aggregate wo
grow higher byh5^pup&* n. The total volume covered by
the new growth ishNd21, whered52 is the Euclidean di-
mension. Thus, forN52 and for our first approximation, th
density is

r5
n

hNd21
5

n

^pup&* nNd21
5

1

^pup&* Nd21
50.7171,

~2.20!
d

-

e

-

p-

i-
d
s
ld

to be compared with the exact valuer50.7340. Although
our model does not really produce fractal structures~due to
the narrow width of our space!, we can make an estimate o
the fractal dimension in the same way Pietroneroet al. esti-
mated it in Refs.@6,18#. For a self similar fractal structure
one expects that a change of scale by a factorN will change
the average mass~number of occupied sites! of a N3N cut
by a factorND, whereD is the fractal dimension. Assumin
that the above procedure represents a coarse graining o
sites intoN3N cells, we conclude that asymptotically

r5ND2d, ~2.21!

and this means that

D5d1
ln~r!

ln~N!
512

ln~^pup&* !

ln~N!
51.5202. ~2.22!

In Sec. IV we suggest a modified estimate of the frac
dimension, allowing for corrections to the asymptotic for
~2.21!.

The study of the convergence to the steady state is a
limited to the subspace of vectorsv with ( j 50

` v j50. The
dynamic equation fori 50 is,

v0~ t11!5q0v0~ t !1(
j 51

`

qv j~ t !5~q02q!v0~ t !,

⇒v0~ t !5~q02q! tv0~0!. ~2.23!

Since q050, the exponentiated prefactor is negative, a
thereforev0(t) is oscillating during its decay. After the firs
iterationv1(1)5p0v0(0), regardless of its initial value. Af-
terwards it continues to followv0, i.e., v1(t)5p0(q0
2q) t21v0(0). After the second iterationv2(2)5p0pv0(0),
and it also starts to decay exponentially with the factor (q0
2q). This happens for anyj .1; after more thanj time steps
(t. j ) one has,

v j~ t !5p0pj 21~q02q! t2 jv0~0!. ~2.24!

For short times and large indicest, j , the dynamics is gov-
erned by the shift-down operator,

v~ t !5v0~0!~q02q! th1pt(
j 51

`

cje
( j 1t), ~2.25!

wheree( j ) are the standard basis vectors, the component
the vectorh are,

h0[1,

hj[
p0

p S p

q02qD j

, j >1, ~2.26!

and the constantscj are determined by the initial conditions

cj5v j~0!2v0~0!hj , j 51,2, . . . . ~2.27!

For p.0.5 the components ofh explode exponentially.
However, ( j 50

` v j (0)50 and therefore lim
j→`

v j (0)50.

Thus, in order to cancel the divergence of thehj ’s, the cj ’s
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must also explode exponentially and have an opposite s
We note that because of this divergenceh does not have a
finite L1 norm and thus does not belong to the domain ofE.
Therefore it is not an eigenvector.

B. Higher-order approximations for NÄ2

As mentioned earlier, the frustrated climber model
sembles the bond-DLA evolution matrix~1.13!, ~1.15!. In
this section we approximate the full dynamics using incre
ingly more complex matrices. By doing so we do not im
prove on the accuracy of our previously published res
@15#, but rather learn about the rate of convergence to
steady state. The method used in this section is genera
and applied to cylindrical DLA with wider periods in th
next section. The caseN52 is the simplest demonstration o
this approach.

The second-order approximation is to allow also tran
tions of the kindj→1 for j >1. We also allow having arbi-
trary values in the top left 232 corner of the matrix, which
we copy from the original matrix of Eq.~1.15!, i.e.,

E53
q0 q1 q q q •••

r 0 r 1 r r r

0 p1 0 0 0

0 0 p 0 0

0 0 0 p 0

A �

4 . ~2.28!

We still require that the sum of the elements in each colu
be equal to 1, i.e.,

q01r 051,

q11r 11p151, ~2.29!

q1r 1p51.

In terms of standard DLA this means that we allow the p
ticle to penetrate two sites into the fjord, but no more. Inde
it is exponentially improbable to penetrate deep into
fjord. This fact suggests a controlled approximation
DLA. In each order of the approximation we allow the dep
of penetration into the fjord to grow by 1. This is done b
copying the (O11)3O upper left block of the original ma
trix ~1.13!, ~1.15!, whereO is the order of approximation
Asymptotic values are used outside this block, i.e.,

Ej 11,j5E`11,̀ , j >O,

Ei , j5y~`!e2k f i , j >O, i<O22,
~2.30!

En21,j512 (
i 50

n22

y~`!e2k f i2E`11,̀ 5y~`!
e2k f (n21)

12e2k f
,

j >O,

and the rest of the matrix elements are null. For example
our case,O52, the constants in the matrix~2.28! are
n.

-

-

s
e
ed

i-

n

-
d
e
r

in

q050,

r 051,

q15
623A2

4
50.4393,

r 150,
~2.31!

p15
3A222

4
50.5607,

q5y~`!5A32A250.3178,

p5E`11,̀ 50.5658,

r 5y~`!
e2k f

12e2k f
50.1163.

First, the steady state is found by solvingP* 5EP* , i.e.,

P0* 5q0P0* 1q1P1* 1q(
j 52

`

Pj* ,

P1* 5q0P0* 1q1P1* 1r (
j 52

`

Pj* ,

~2.32!
P2* 5p1P1* ,

Pj 11* 5pPj* , j >2.

The solution to the last equation is

Pj* 5P2* pj 22, j >2. ~2.33!

Keeping this in mind it is possible to exchange the two l
equations of the set~2.32! with

(
j 52

`

Pj* 5p1P1* 1p(
j 52

`

Pj* . ~2.34!

Thus we obtain an autonomous and finite set of three eq
tions for three unknowns, namely,P0* , P1* and P̃2*

[( j 52
` Pj* . The third parameter,P̃2* , represents the tota

probability for the infinitely many configurations withj >2.
This reduction of the problem to three parameters beca
possible because all of the configurations withj >2 have
exactly the same transition probabilities to the configuratio
j 50 and j 51, and because they have exactly the same
ward growth probability. Thus we obtain a fixed point equ
tion for a three-component vector,

F P0*

P1*

P̃2*
G5F q0 q1 q

r 0 r 1 r

0 p1 p
GF P0*

P1*

P̃2*
G . ~2.35!

It is guaranteed that a nontrivial solution exists, because
sum of the terms in each column of the finite matrix equ
1. Using the constants from Eqs.~2.31!, the normalized so-
lution obtained is,
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TABLE II. Some steady-state results of the third-order approximation.

^pup&* P0* P1* P2* P3* P4* P5*

Third order 0.6812 0.2696 0.3114 0.1820 0.1029 0.0582 0.03
Accurate 0.6812 0.2696 0.3113 0.1809 0.1032 0.0586 0.0
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P0*
(2)50.2705, ~0.2696!,

P1*
(2)50.3184, ~0.3113!, ~2.36!

P̃2*
(2)50.4111, ~0.4191!,

where the superscript denotes the order of approximation
a comparison is drawn to the exact values in parentheses
‘‘exact’’ we refer to very high order calculations, or to va
ues from simulations~which are the same up to the present
accuracy of 1024) @15#. The elementsPj* for j >2 are evalu-
ated using

Pj*
(2)5~12p!P̃2*

(2)pj 22, j >2. ~2.37!

It is now possible to evaluate the average upward gro
probability

^pup
(2)&* 5P0* r 01P1* p11 P̃2* p50.6816, ~2.38!

where the exact value is 0.6812. The fractal dimension
evaluated as in Eq.~2.22!,

D (2)51.5530, ~2.39!

compared to the exact value 1.5538.
The temporal convergence to the steady state in

second-order approximation can be analyzed using both
shift-down operator and eigenvectors. The first eigenve
of the matrix in Eq.~2.35! is the fixed point solution, which
we denote byP̃* . Let us denote the other two~three-
components! eigenvectors byh̃ and g̃, and their correspond
ing eigenvalues byul0u>ul1u. After t iterations of the evo-
lution matrix we have

P̃~ t !5P̃* 1c0l0
t h̃1c1l1

t g̃, ~2.40!

wherec0 andc1 are constants determined by the initial co
ditions. The configurational average of some functiona( j )
with a( j )5a(2) for j .2, can be expressed in terms of the
eigenvalues only,

^a&~ t !5^a&* 1k0l0
t 1k1l1

t , ~2.41!

wherek0 andk1 are some other constants. A special functi
of this type is the upward growth probability,pup( j )
5(r 0 ,p1 ,p,p,p, . . . ). Theeigenvalue with the largest abso
lute value other than 1,l0, makes the largest contribution t
the deviation from the steady-state values, and thus con
the temporal convergence. The characteristic time cons
for the exponential convergence is,

t52
1

ln~ ul0u!
. ~2.42!
nd
By

h

is

e
he
or
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nt

The eigenvalues obtained arel0
(2)520.5599 and l1

(2)

50.1257, using the constants of Eqs.~2.31!. Hence,t (2)

51.7. In order to describe the convergence ofPj (t) for j
>2 we use the vectorv(t)5P(t)2P* , once more, and we
perform a decomposition similar to Eq.~2.25!,

v~ t !5c0l0
t h1c1l1

t g1pt(
j 52

`

cje
( j 1t), ~2.43!

wherec0 andc1 are the same as in Eq.~2.40! and the con-
stantscj for j >2 are determined by the initial conditio
v(0). Thevectorsh andg are infinite generalizations of th
finite vectorsh̃ and g̃, according to

hj5h̃ j , gj5g̃ j , j 50,1,

h25p1h̃1 , g25p1g̃1 , j 52, ~2.44!

hj5h2S p

l0
D j 22

, gj5g2S p

l1
D j 22

, j >2.

Becausep5E`11,̀ .ul0u,ul1u, it is apparent that the com
ponentshj and gj diverge exponentially for largej ’s. This
means that these vectors do not have a finiteL1 norm, and
that they do not belong to the domain ofE. Therefore, they
are not eigenvectors, andl0 andl1 are not eigenvalues ofE.
Nevertheless, Eq.~2.43! is still true. The effect of the shift-
down operator is manifested in the sumpt( j 52

` cje
( j 1t).

Using the same method it is possible to make higher-or
calculations. The steady-state quantities resulting from
third-order approximation are presented in Table II, in co
parison with exact results. The eigenvalue with the larg
absolute value isl0

(3)520.5687, which has a greater abs
lute value thanE`11,̀ 50.5658. This means that a legitima
eigenvector exists for the infinite matrix. In the fourth- an
fifth-order approximation we getl0

(4,5)'20.5688. This sug-
gests that the higher the order the more accurate is the ev
ation of l0 and that the accuracy obtained is better th
1024. The typical time needed to settle in the steady st
from any initial condition is therefore as short as

t51.8. ~2.45!

III. DLA WITH NÌ2

The generalization of the exact methods from Ref.@15# to
N.2 is not straightforward. Trying to proceed along a sim
lar line, one would try to parametrize the interface with
parameter i 51,2, . . . ,̀ , and write the Master equatio
Pi(t11)5( j 51

` Ei , j Pj (t). Unlike the caseN52, the param-
eterization forN.2 is very complicated. For instance, fo
the caseN53 it is reasonable to try using two paramete
which indicate the height of two columns relative to th
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highest ~or lowest! third column. However, this is insuffi
cient because complex fjords~involving overhangs! might
occur, as shown in Fig. 3. Instead of achieving a perf
parametrization, we adopt the approximate approach of
II B, i.e., we take into account only a finite number of inte
face configurations. These configurations are classified
cording to the maximum height difference between the hi
est and lowest particles on the interfaceDm. In the
Oth-order approximation all the configurations withDm
<O are included. The excluded configurations withDm
.O are transformed into a configuration withDm5O, by
filling in the (O11)th row below the highest particle; se
Fig. 4. This transformation does not change the growth pr
abilities considerably. Especially, the upward growth pro
ability would hardly change for largeO. The variablePi(t),
wherei corresponds to a configuration withDm5O, actually
represents the sum of probabilities of all the configuratio
with Dm>O, that have the sameO uppermost rows, rathe
than represent the probability of the configurationi alone.
This is analogous toP̃2* in the example above, see Sec. II
After the finite set of configurations is chosen, the config
rations are indexed with arbitrary consecutive numbe
Then, the growth probabilities for each configuration a
computed by solving the Laplace equation and by taking i
account the bond multiplicity. Each growth process result
a different final configuration, which must be identified wi
one of the configurations in the finite set. Special attentio
required for the upward growth processes, which might
sult in configurations withDm.O, which do not belong to
the finite set. This is rectified by truncating the bottom ro
of the interface~considering it as fully occupied!. The total
upward probability for each configuration is added up a
stored in a functionpup( i ), later to be averaged over th
steady-state distribution of configurations. The growth pr
abilities are arranged in the evolution matrix,E, whose fixed
point corresponds to the steady-state distribution of confi
rations, which is required for evaluatinĝpup&* , r and D.
Because the matrix is finite, the existence of at least

FIG. 3. An example of an interface configuration forN53 that
cannot be characterized using the height differences of two colu
relative to the third.

FIG. 4. Configuration~a!, with Dm52, is truncated by taking
only the top row, and turns into configuration~b!, with Dm51, in
the first-order approximation (O51).
t
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fixed point is guaranteed. The other eigenvectors describe
rate of convergence to the steady state.

The best way to demonstrate this approach is by show
a few sample calculations. The easiest ones are the first-
second-order approximation forN53 and the first-order ap
proximation forN54. After that we explain the general a
gorithm for higher orders and widths, and report the resu
obtained numerically.

A. First-order approximation for NÄ3

In the first-order approximation we only look at the to
row of the aggregate. ForN53 there are only three possibl
configurations~up to symmetry!, with the top row occupied
by 1, 2 or 3 particles. Each configuration is indexed and
each configuration we identify the growth processes and
final configurations resulting from them; see Fig. 5. In R
@12# we show that the calculation presented in this sect
can be used to solve exactly~no approximations! the case of
site-DLA with N53.

The first configuration (j 51) grows upward with prob-
ability 1, thus pup(1)51. The resulting configuration isi
52, thusE2,151 andEi ,150 for iÞ2. This concludes the
construction of the first column of the evolution matrix.

In order to obtain the other growth probabilities we ha
to solve the relevant Laplace problems, for which we ne
the Green’s function according to Eq.~1.11!. For N53 we
have kl5(2p/3)l for l 50,1,2. We recall thate2k(k)5q
2Aq221, whereq[22cos(k) @15# and find that

e2k051,

e2k15e2k25
52A21

2
, ~3.1!

and thus

g3~0!5
1

3 S 112
52A21

2 D 5
62A21

3
,

~3.2!

g3~1!5g3~2!5
12g3~0!

2
5

A2123

6
.

These values obey the normalization condition~1.12!.
Because of the symmetry of the configurationj 52, the

potential can be expressed in terms of one variablex
[F(0,0)5F(0,2), as shown in Fig. 6. This kind of figur
demonstrates the distribution of the potentialF(m,n) over

ns

FIG. 5. The three possible configurations in the first-order
proximation forN53, up to translation symmetry. The arrows in
dicate the possible transitions due to growth processes. The tr
tion probability from configurationj to i is denoted byEi , j .
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2540 PRE 62BOAZ KOL AND AMNON AHARONY
the lattice, and thus we call it a ‘‘potential diagram.’’ Th
potentialsF(1,0)5F(1,2)511(12g3(1))x do not corre-
spond to a growth process, but are important for solving
x. The potentialF(1,1)5112xg3(1) corresponds to the up
ward growth process. The Laplace equation forx is

4x5x1~12g3~1!!x11,

⇒x5
92A21

10
50.4417. ~3.3!

Growth in both sites (0,0) and (0,2) results in configurat
i 53, hence

E3,25
4

3
x5

1822A21

15
50.5890, ~3.4!

where the numerator, 4, is inserted because there are
bonds for each of the two growth sites, and the denomin
is the normalization factorN53. A growth process in site
(1,1) results in an interface that does not belong to our fin
set. In this approximation we only take into account the to
most row of the interface, and therefore this interface is id
tified with configurationi 52, i.e.,

E2,25
2xg3~1!11

3
5

2A2123

15
50.4110. ~3.5!

The transition toi 51 is impossible, hence,E1,250. It is
easy to check that the second column of the matrix is n
malized, i.e.,( i 51

3 Ei ,251. The total upward growth prob
ability for this configuration is

pup~2!5E2,250.4110. ~3.6!

The potentials of configurationj 53 are described in
terms ofx5F(0,1), as in Fig. 7. The Laplace equation is

FIG. 6. A ‘‘potential diagram:’’ the potentialsF(m,n) of the
configurationj 52, expressed in terms of the variablex.

FIG. 7. The ‘‘potential diagram’’ for configurationj 53.
r
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or

e
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4x5g3~0!x11,

⇒x5
62A21

5
50.2835. ~3.7!

There are three bonds leading to growth in site (1,0), wh
results in the configurationi 51, hence

E1,35
3

3
x50.2835. ~3.8!

The upward growth process results ini 52 after truncation,
and has probability

pup~3!5E2,35
2

3
~11g3~1!x!50.7165. ~3.9!

The third element in the column isE3,350, which concludes
the calculation of the elements of the evolution matrix,

E(3,1)5F 0 0 0.2835

1 0.4110 0.7165

0 0.5890 0
G , ~3.10!

where the superscript indicates that it is the first-order
proximation forN53. The upward growth probabilities se
ries is

pup5~1,0.4110,0.7165!, ~3.11!

which happens to be equal to the second row of the mat
The normalized fixed point of the matrix isP1* 50.0951,

P2* 50.5695 andP3* 50.3354. The average upward grow
probability is

^pup&* 5(
i 51

3

Pi* pup~ i !50.5695. ~3.12!

We have performed some DLA simulations in the cylindric
geometry for several values ofN and measured̂pup&* @19#.
The value obtained from simulations forN53 is 0.5462. The
typical accuracy is on the order of 1024. The steady-state
average density and fractal dimension are evaluated u
Eqs.~2.20! and ~2.22!,

r5
1

3^pup&*
50.5853, ~0.6103!,

~3.13!

D512
ln~^pup&* !

ln~3!
51.5125, ~1.5506!.

The values in parentheses are obtained from the same fo
las, using the simulation value of^pup&* . The two other ei-
genvalues are complex,l0,1520.2960.28i , so according to
Eq. ~2.42! t51.10.

B. Higher-order approximations for NÄ3

The possible configurations of the interface in the seco
order approximation are listed and indexed in Fig. 8. T
growth probabilities for the first three configurations we
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already computed in the previous section, but a rearran
ment of the upward growths is required in the evolution m
trix. Now, the upward growth from configurationj 52 no
longer stays ati 52, but rather makes a transition toi 54,
and the upward growth fromj 53 results ini 55 instead of
i 52. Thus, we copy the previous evolution matrixE(3,1) into
the upper left corner of the new matrixE(3,2) with the re-
placements:E2,2

(3,2)50, E4,2
(3,2)5E2,2

(3,1) , E2,3
(3,2)50, and E5,3

(3,2)

5E2,3
(3,1) . The unspecified elements in the first three colum

are all equal to zero.
The next step is to go over each of the remaining confi

rations i 54, . . . ,7, andcompute their probabilities, which
are inserted into the evolution matrix according to the fi
configuration in which the relevant growth process resu
Configuration 4 is shown in Fig. 9. The Laplace equation

4y5y1x,

4x5x1y111~12g3~1!!x,
~3.14!

⇒x5
3

14
~72A21!50.5180,

y5x/350.1727.

The growth probabilities are

E6,45
2

3
x50.3453,

E5,45
4

3
y5

4

9
x50.2302, ~3.15!

E4,45
112xg3~1!

3
50.4244.

The upward growth probability ispup(4)5E4,450.4244.

FIG. 8. Possible configurations in the second-order approxi
tion for N53. Note that the first three configurations,j 51,2,3, are
the same as in the first-order approximation.

FIG. 9. The ‘‘potential diagram’’ for configurationj 54.
e-
-
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Configuration 5 is shown in Fig. 10. The Laplace equ
tions are

4y5y/41x1xg3~1!1yg3~0!11,

4x5y1g3~0!x1g3~1!y11,

⇓ ~3.16!

y50.4808,

x50.4557.

The growth probabilities are

E7,55
2

3
x50.3038,

E3,55
y

3
50.1603,

~3.17!

E2,55
3

3
y/450.1202,

E4,55
11g3~1!~x1y!

3
50.4157.

The upward growth probability ispup(5)5E4,550.4157.
Configuration 6 is shown in Fig. 11. The Laplace equ

tions are

4y5y/41x,

4x5y1g3~0!x11,

⇓ ~3.18!

x5
15

151
~2625A21!50.3067,

y5
4

15
x50.0818.

a-

FIG. 10. The ‘‘potential diagram’’ for configurationj 55.

FIG. 11. The ‘‘potential diagram’’ for configurationj 56.
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The growth probabilities are

E1,65
2

3
x50.2044,

E3,65
2

3
y5

8

45
x50.0545,

~3.19!

E7,65
3

3
y/45x/1550.0204,

E5,65
2

3
~11g3~1!x!50.7206.

The upward growth probability ispup(6)5E5,650.7206.
Configuration 7 is shown in Fig. 12. The Laplace equ

tions are

4x5x/41g3~0!x11,

⇓ ~3.20!

x5
12

105
~2124A21!50.3051.
tr
ul

3

-

The growth probabilities are

E1,75
2

3
x50.2304,

E3,75
3

3
x/450.0763, ~3.21!

E5,75
2

3
~11g3~1!x!50.7203.

The upward growth probability ispup(7)5E5,750.7203.
In summary,

FIG. 12. The ‘‘potential diagram’’ for configurationj 57.
E(3,2)53
0 0 0.2835 0 0 0.2044 0.2034

1 0 0 0 0.1202 0 0

0 0.5890 0 0 0.1603 0.0545 0.0763

0 0.4110 0 0.4244 0.4157 0 0

0 0 0.7165 0.2302 0 0.7206 0.7203

0 0 0 0.3453 0 0 0

0 0 0 0 0.3038 0.0204 0

4 , ~3.22!

pup5~1,0.4110,0.7165,0.4244,0.4157,0.7206,0.7203! . ~3.23!
in
ions
with

s.
One can check that elements in each column of the ma
sum up to 1. Note that the majority of the elements are n
The normalized fixed point is,

P* 5~0.0685,0.1011,0.1145,0.2680,0.2711,0.0925,0.084!,
~3.24!

with which we compute some steady-state quantities,

^pup&* 5(
j 51

7

Pj* pup~ j !50.5459, ~0.5462!,

r5
1

3^pup&*
50.6106, ~0.6103!, ~3.25!

D512
ln~^pup&* !

ln~3!
51.5510, ~1.5506!,
ix
l.
where once again, the values from simulation are shown
parentheses. It is apparent that the addition of configurat
increases the accuracy of the results. The eigenvalues
the largest absolute values~except for 1) arel0,1520.34
60.40i , hencet51.6.

The third-order approximation yields 17 configuration
The final results are

^pup&* 5(
j 51

17

Pj* pup~ j !50.5460, ~0.5462!,

r5
1

3^pup&*
50.6104, ~0.6103!, ~3.26!

D512
ln~^pup&* !

ln~3!
51.5507, ~1.5506!.
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The eigenvalues with the largest absolute values~except for
1) arel0,1520.3460.40i , hencet51.6.

It is interesting to inspect the histogram of the distributi
of pup( j ), illustrated in Fig. 13. One immediately observ
that the upward growth probabilities are clustered in th
groups: the top one at 1, the second just above 0.7 and
third, just above 0.4. It is easy to check that the top o
corresponds to the configurationi 51, the middle group cor-
responds to configurations that have two particles at the
row, and the bottom group corresponds to configurati
with one particle at the top row. This suggests that perh
17 different configurations are excessive, and the real n
ber of effective configurations is around 3. An interesti
question is whether it is possible to further reduce the nu
ber of configurations in higher-order approximations by
cluding only ‘‘effective’’ ones.

C. First-order approximation for NÄ4

Our last example is the caseN54, for which we present
the first-order calculation. First, we calculate the Gree
function g4(n) according to Eq.~1.11!. For N54, there are
four possible values fork and k, namely, kl5(2p/N) l
50,p/2,p,(3/2)p, e2k051, e2k15e2k3522A3, and
e2k2532A8. Hence,

FIG. 13. The distribution ofpup over configurations for the
third-order approximation forN53.

FIG. 14. Possible configurations in the first-order approximat
for N54.
e
he
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g4~0!5
112~22A3!132A8

4
522

A31A2

2
50.4269,

g4~1!5g4~3!5
1231A8

4
5

A221

2
50.2071, ~3.27!

g4~2!5
122~22A3!132A8

4
5

A32A2

2
50.1589.

Once again, Eq.~1.12! is obeyed.
Figure 14 displays the relevant configurations. Configu

tion j 51 grows into configurationi 52 with probability 1,
thusE2,151 andEi ,150 for iÞ2. Also, pup(1)51.

Configuration j 52 is shown in Fig. 15. The Laplac
equations are

4x5y1g4~1!y1„g4~0!1g4~2!…x11,

4y52x1g4~0!y12g4~1!x11,

⇓ ~3.28!

x50.5148,

y50.6277.

The nonzero growth probabilities in the second column
E3,25(4/3)x50.5148, E4,25(1/4)y50.1569, and E2,2
5(1/4)„112g4(1)x1g4(2)y…50.32835pup(2).

Configurationj 53 is presented in Fig. 16. The Laplac
equation is

4x5x1„g4~0!1g4~1!…x11,
~3.29!

⇒x50.4226.

n

FIG. 15. The ‘‘potential diagram’’ for configurationj 52.

FIG. 16. The ‘‘potential diagram’’ for configurationj 53.
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The nonzero growth probabilities in the third column a
E5,35(4/4)x50.4226 andE2,35(2/4)@11„g4(1)1g4(2)…x#
50.57745pup(3).

Configuration j 54 is shown in Fig. 17. The Laplac
equation is

4x5„g4~0!1g4~2!…x11,
~3.30!

⇒x50.2929.

The nonzero growth probabilities in the fourth column a
E5,45(6/4)x50.4393 and E2,45(2/4)„112g4(1)x…
50.56075pup(4). Note that this configuration already ap
peared forN52.

The last configuration is shown in Fig. 18. The Lapla
equation is

4x515g4~0!x,
~3.31!

⇒x50.2799.

The nonzero growth probabilities in the fifth column a
E1,55(3/4)x50.2099 and E2,55(1/4)@31„g4(2)
12g4(1)…x#50.79015pup(5). This concludes the calcula
tion of the 535 evolution matrixE(4,1).

The steady-state vector is

P* 5~0.0298,0.4954,0.2551,0.0777,0.1420!. ~3.32!

It enables us to calculate the following steady-state qua
ties:

FIG. 17. The ‘‘potential diagram’’ for configurationj 54.

FIG. 18. The ‘‘potential diagram’’ for configurationj 55.
ti-

^pup&* 5P2* 50.4954, ~0.4657!,

r5
1

4^pup&*
50.5046, ~0.5368! , ~3.33!

D512
ln~^pup&* !

ln~4!
51.5066, ~1.5512!,

where again, the values in parentheses are from simula
The eigenvalues with the largest absolute value after 1
l0,1520.1660.38i , hencet51.1.

It is also possible to conduct these calculations using
ferent boundary conditions at the bottom; rather than ass
ing that there is a filled row of occupied sites below t
configuration, it is possible to assume that each unoccup
site at the lowest row of the configuration is above an infin
fjord that extends all the way below. The two possibiliti
are explained in Fig. 19. Performing the calculations w
infinite fjords is a bit simpler, because there are fewer c
figurations, e.g., the configurationi 54 would not appear in
the first-order approximation forN54 @19#.

D. Higher-order computations

As one increasesN and the order of approximationO, the
number of configurations increases exponentially, and it
comes harder to go over all of them manually. However, i
possible to construct a computer algorithm to perform
procedure described here. The main challenges are the a
matic configuration recognition and automatic computat
of the exact growth probabilities per configuration. In th
section we explain the algorithm and report some of the
portant results.

The algorithm follows the method outlined in the e
amples of the previous sections, i.e., it goes over all
possible configurations of the interface. In the sample ca
lations we have initially made a list of all the possible co
figurations, called the index. Instead of doing this, the p

FIG. 19. The two top rows of a configuration are shown in~a!.
Two possible extensions for the rest of the configuration below
~b!, with a filled row right below the configuration~this boundary
condition is used in the calculations presented in this paper!, or ~c!,
with the bottom row of the configuration repeating itselfad infini-
tum, creating an infinite fjord.
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gram starts with only one configuration, namely the flat o
~all the sites of the top row of the aggregate are occupie!,
which is indexed byj 51. This configuration grows with
probability 1 to a new configuration that has one particle
the top row, while the row below it is fully occupied. Th
new configuration is inserted into the list of configuratio
with an indexj 52. Therefore, the program setsE2,151 and
pup(1)51. Then the program continues by handling the n
configuration in the list, namelyj 52. For each configura
tion, it solves the Laplace equations and calculates
growth probabilities. Each growth process may create a n
configuration. The resulting configuration is first checked
consistency with the desired orderO; configurations which
haveDm.O are truncated, as in Fig. 4. One then compa
each ‘‘new’’ configuration with the existing list of configu
rations. If it does not exist in that list it is added at the end
the list, and indexed consecutively. If the index of the co
figuration that results from the growth process isi and the
index of the initial configuration isj then the growth prob-
ability is inserted into the matrix elementEi , j . The total sum
of all the upward growth probabilities of the initial configu
ration j is stored inpup( j ). The main loop stops when th
program finishes to process the last configuration in the
dex list. At this stage the Markovian evolution matrixE is
irreducible and closed, i.e.,( iEi , j51 for every j. Then the
fixed point P* is calculated, by taking an initial vector an
iteratingE on it many times until it converges~for very large
matrices this is much faster than using any of theMATLAB

library functions!. The average upward growth probability
calculated using

^pup&* 5(
j

Pj* pup~ j !, ~3.34!

the average density and the fractal dimension are then c
puted using the left-hand side of Eq.~2.20! and Eq.~2.22!.

One of the challenges of the computer algorithm is
recognition of configurations. This recognition is importa
so that each growth process will be inserted into the evo
tion matrixEi , j with the correct indexi ( j is the index of the
configuration before growth!. The recognition may be diffi-
cult because configurations that seem different may actu
be equivalent. By equivalent we mean that they have
exact same set of transition~growth! probabilities. The solu-
tion to the Laplace equations is determined uniquely by
shape of the interface, therefore all of the configurations w
the same external interface are equivalent. The descriptio
the interface is not a trivial task though. We find that
efficient way to characterize an interface is by the set
empty sites that are connected to infinity. Of course, it
sufficient to specify only empty sites that are not higher th
the highest particle in the aggregate, because all of the em
sites above it are connected to infinity. Figure 20 shows
example of two configurations that are not identical, but th
have the same exterior contour. Both of them have a sin
empty site that is connected to infinity.

In order to reduce greatly the number of configuration
is advisable to take symmetry into account, i.e., all the c
figurations which can be obtained from one another usin
rotation around the axis of the cylinder have the same gro
probabilities and the same steady-state weights. The sam
e
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true for mirror images. Instead of taking all of them in
account, we choose one as a canonical representative o
whole set of symmetric configurations.

The results are summarized in Table I. By comparing
approximations to accurate results from simulations, it see
that in order to obtain a relative accuracy of about 1023 one
has to use at least an order of approximation ofO5N22
~except forN53, where one still has to use the second-ord
approximation!. This becomes very difficult already forN
56, where in the fourth-order calculation there are 49 6
different configurations up to symmetry.

IV. DISCUSSION

This paper treats DLA as a Markov process. The Mark
states are the possible shapes of the interface, and the
kovian evolution matrixE is calculated analytically using
exact solutions of the Laplace equations, with proper norm
izations. We propose a truncation scheme that takes into
count only a finite number of states. The states are orde
according to the maximal difference in height between
highest and lowest points on the interface,Dm, and in each
order of truncationO, only the states withDm<O are in-
cluded. We justify this approach by the fact that the poten
F decays exponentially in deep fjords, and thus the shap
the interface in its deeper parts has very little effect on
growth probabilities. We perform this calculation forN52,
and verify that indeed it converges to the known analy
solution. We adopt the same approach for higher values
the width N, between 3 and 7, and calculate the avera
densityr in good agreement with simulations. The fact th
the number of configurations grows exponentially withN
and withO, makes the computation less effective than sim
lation for largeN.

We observe that the method converges as a function oO,
also for higher values ofN. Let us denote the calculate
average steady-state density of an aggregate of widthN in
the O’th-order approximation byrc(N,O). We observe that
rc(N,O) converges to a finite limit very rapidly as a functio
of O. In fact, a relative accuracy of 1023 is achieved forO
5N22 ~except forN53). This enables us to obtain accu
rate results for 3<N<6. The drawback of this method i
that the number of configurations diverges exponentia
with O and N, and therefore it is possible to perform th
calculations only for relatively lowN’s and O’s. Our com-
puter was strong enough to perform the calculation only
the third-order approximation forN57, and therefore the
result forN57 is not very accurate. One would hope that
may be possible to perform low-order approximations

FIG. 20. Even though configuration~a! and~b! are not identical,
they are equivalent because they have the same growth prob
ties. Both configurations have the same external interface con
which is characterized by the set of sites that are connecte
infinity. In this example there is only one such site, which is n
higher that the aggregate, and it is marked by a circle.
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large N’s and then extrapolate, in order to estimate the
sults for largeO’s. Indeed, it is reasonable to conjecture t
scaling lawrc(N,O)5r(N) f (N/O), wherer(N) is the ex-
act (O→`) density, as a function ofN, and f (N/O) is a
universal scaling function that obeys lim

x→0
f (x)51. Our

investigation shows that in spite of the fact that the conj
ture is not very accurate forO51 andO52, it is quite good
for higher values ofO, and presumably also for higher value
of N. This scaling relation may help to perform the extrap
lation O→` for higher values ofN. Paradoxically, it is very
hard to obtain data points for largeN’s andO’s, and thus to
extract the scaling function accurately. Thus we are unabl
make the extrapolation even forN57, and we estimater(N)
by the highest-order approximation available. However,
suggest an alternative way to obtainrc(O,N), namely by
simulation: it is possible to perform a regular DLA simul
tion in cylindrical geometry, only that one has to keep t
O’th row below the highest particle in the aggregate co
stantly filled. Measuring the average density of the aggreg
in such a simulation would approximaterc(N,O). This
simulation would be faster than a regular simulation, beca
particles would stick faster, due to the fact that they have
free space. This study would perhaps yield the scaling fu
tion f (N/O), and enable extrapolation of lower order a
proximations for higherN’s, should anyone venture to pe
form them on more powerful computers. In light of th
discussion we suggest a more efficient way to perform D
simulations in cylindrical geometry. We argue that one c
obtain a relative accuracy of 1023 if one follows just theN
22 topmost rows of the aggregate. This should save so
time, because the diffusing particle would stick faster, an
would also require less memory. This is not to say that i
sufficient to grow the aggregate until it reaches a heigh
N22, but rather, to perform many more growth process
and each time the aggregate reaches a height ofN21, trun-
cate the bottom row.

We also discuss the temporal rate of convergence of
system to its steady state. In this context we find that ther
an exponential convergence to the steady state, and we
culate the characteristic time constantt. This is demon-
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strated using the simple model of the frustrated climber. T
convergence is described in terms of the eigenvalues of
Markovian matrix, and in terms of the infinite shift-dow
operator.

Considering the fractal dimension, Pietroneroet al. sug-
gested thatr(N)5ND2d, as mentioned in Eq.~2.21!. In
principle, one should always include an amplitude and fin
size corrections of the form

r~N!5AN2a~11B/N1 . . . !, ~4.1!

wherea5d2D, andA andB are constants. The second ter
appearing in Eq.~4.1! is a correction to scaling term. Gene
ally, there is an infinite sum of such terms with higher neg
tive powers ofN. Because we have data only for small valu
of N, these correction terms may be large, but since we h
only a few accurate data points (r(N) for N52,3, . . . ,6),
we try to extract the parametersa, A and B only, and not
higher-order terms. Using the three results forN54,5,6, we
determine the three unknown parameters to beA50.82, B
50.35, anda50.362, henceD51.64. The deviation from
the well known value ofD51.66 can be attributed to sys
tematic error due to the omission of higher-order finite s
correction terms. We fit simulation data@19# for N53, 4, 5,
6, 7, 32, 48, 64, 96, 128, to a higher-order approximat
r(N)5AN2a(11B/N1C/N2), and find thatC520.205,
B50.561, A50.761, anda50.339, which means thatD
51.661. The maximum relative error of the fit is 1
31023, and the average relative error is 1.031023, which is
in good agreement with estimated accuracy of the simu
tions.
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